精英家教网 > 高中数学 > 题目详情
13.已知函数f(x)=$\left\{\begin{array}{l}{|lo{g}_{5}(1-x)|(x<1)}\\{-(x-2)^{2}+2(x≥1)}\end{array}\right.$,则关于x的方程f(x+$\frac{1}{x}$-2)=a的实根个数不可能为(  )
A.5个B.6个C.7个D.8个

分析 以f(x)=1的特殊情形为突破口,解出x=1或3或$\frac{4}{5}$或-4,将x+$\frac{1}{x}$-2是为整体,利用换元的思想方法进一步讨论.

解答 解:∵f(x)=$\left\{\begin{array}{l}{|lo{g}_{5}(1-x)|(x<1)}\\{-(x-2)^{2}+2(x≥1)}\end{array}\right.$,即f(x)=$\left\{\begin{array}{l}{lo{g}_{5}(1-x),x≤0}\\{-lo{g}_{5}(1-x),0<x<1}\\{-(x-2)^{2}+2,x≥1}\end{array}\right.$.
因为当f(x)=1时,
x=1或3或$\frac{4}{5}$或-4,
则当a=1时,
x+$\frac{1}{x}$-2=1或3或$\frac{4}{5}$或-4,
又因为 x+$\frac{1}{x}$-2≥0
或x+$\frac{1}{x}$-2≤-4,
所以,当x+$\frac{1}{x}$-2=-4时只有一个x=-2与之
对应.
其它情况都有2个x值与之对应,
故此时所求的方程有7个根,
当1<a<2时,y=f(x)与y=a有4个交点,
故有8个根;
当a=2时,y=f(x)与y=a有3个交点,
故有6个根;
综上:不可能有5个根,
故选:A.

点评 本题重点考查了分段函数、函数的零点等知识,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知圆C:x2+y2+2x+8y-8=0.
(1)判断圆C与圆D:x2+y2-4x-4y-1=0的位置关系,并说明理由;
(2)若圆C关于过点P(6,8)的直线l对称,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图所示,在三棱柱ABC-A1B1C1中,BB1⊥平面A1B1C1,AC=CB=CC1=2,∠ACB=90°,D、E分别是A1B1、CC1的中点.
(1)求证:C1D∥平面A1BE;
(2)求直线BC1与平面A1BE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数f(x)是R上的奇函数,且当x∈(-∞,0)时,f(x)=x(2x-3),则f(4)=44.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.求函数f(x)=$\frac{x}{{x}^{2}+1}$的单调区间.判断在各单调区间上函数的单凋性.并证明你的判断.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{1}{2}$,其中一个顶点是双曲线$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1的焦点.
(1)求椭圆C的标准方程;
(2)过点P(0,3)的直线l与椭圆C相交于不同的两点A,B,过点A,B分别作椭圆的两条切线,求其交点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知 f(x)=$\frac{lnx}{x}$,其中e 为自然对数的底数,则(  )
A.f(2)>f(e)>f(3)B.f(3)>f(e)>f(2)C.f(e)>f(2)>f(3)D.f(e)>f(3)>f(2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.五个人站成一排,求在下列条件下的不同排法种数:
(1)甲必须在排头;
(2)甲、乙相邻;
(3)甲不在排头,并且乙不在排尾.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知正方体ABCD-A1B1C1D1的棱长为1,E为棱CC1的中点,F为棱AA1上的点,且满足A1F:FA=1:2,点F、B、E、G、H为面MBN过三点B、E、F的截面与正方体ABCD-A1B1C1D1在棱上的交点,则下列说法错误的是(  )
A.HF∥BEB.$BM=\frac{{\sqrt{13}}}{2}$
C.∠MBN的余弦值为$\frac{{\sqrt{65}}}{65}$D.△MBN的面积是$\frac{{\sqrt{61}}}{4}$

查看答案和解析>>

同步练习册答案