·ÖÎö £¨1£©ÓÉÍÖÔ²µÄÀëÐÄÂÊΪ$\frac{1}{2}$£¬ÆäÖÐÒ»¸ö¶¥µãÊÇË«ÇúÏß$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1µÄ½¹µã£¬Ñ®³ö·½³Ì×éÇó³öa£¬b£¬c£¬ÓÉ´ËÄÜÇó³öÍÖÔ²CµÄ±ê×¼·½³Ì£®
£¨2£©µ±Ö±ÏßlµÄбÂÊ´æÔÚʱ£¬ÉèÖ±ÏßlµÄ·½³ÌΪy=kx+3£¬ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬Çó³öÍÖÔ²ÔÚµãA´¦µÄÇÐÏß·½³ÌΪ$\frac{x{x}_{1}}{25}+\frac{4y{y}_{1}}{75}$=1£¬¢ÙÍÖÔ²ÔÚµãB´¦µÄÇÐÏß·½³ÌΪ$\frac{x{x}_{2}}{25}+\frac{4y{y}_{2}}{75}$=1£¬¢Ú£¬ÁªÁ¢¢Ù¢Ú£¬µÃy=$\frac{75£¨{x}_{2}-{x}_{1}£©}{4£¨{x}_{2}{y}_{1}-{x}_{1}{y}_{2}£©}$£¬Çó³ö½»µãµÄ¹ì¼£·½³ÌΪy=$\frac{25}{4}$£®µ±Ö±ÏßlµÄбÂʲ»´æÔÚʱ£¬ÎÞ½»µã£®ÓÉ´ËÄܹýÇó³ö¹ýµãA£¬BËù×÷ÍÖÔ²µÄÁ½ÌõÇÐÏߵĽ»µãµÄ¹ì¼£·½³Ì£®
½â´ð ½â£º£¨1£©¡ßÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊΪ$\frac{1}{2}$£¬ÆäÖÐÒ»¸ö¶¥µãÊÇË«ÇúÏß$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1µÄ½¹µã£®
Ë«ÇúÏß$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1µÄ½¹µãF1£¨-5£¬0£©£¬F2£¨5£¬0£©£¬
¡àÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©ÖУ¬$\left\{\begin{array}{l}{a=5}\\{\frac{c}{a}=\frac{1}{2}}\\{{a}^{2}={b}^{2}+{c}^{2}}\end{array}\right.$£¬
½âµÃa=5£¬c=$\frac{5}{2}$£¬${b}^{2}=\frac{75}{4}$£¬
¡àÍÖÔ²CµÄ±ê×¼·½³ÌΪ£º$\frac{{x}^{2}}{25}+\frac{4{y}^{2}}{75}$=1£®
£¨2£©µ±Ö±ÏßlµÄбÂÊ´æÔÚʱ£¬ÉèÖ±ÏßlµÄ·½³ÌΪy=kx+3£¬
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
ÉèÔÚA£¨x1£¬y1£©´¦ÇÐÏß·½³ÌΪy-y1=k1£¨x-x1£©£¬
ÓëÍÖÔ²C£º$\frac{{x}^{2}}{25}+\frac{4{y}^{2}}{75}$=1ÁªÁ¢$\left\{\begin{array}{l}{y-{y}_{1}={k}_{1}£¨x-{x}_{1}£©}\\{\frac{{x}^{2}}{25}+\frac{4{y}^{2}}{75}=1}\end{array}\right.$£¬
ÏûÈ¥y£¬µÃ£¨$4{{k}_{1}}^{2}+3$£©x2+8k1£¨-k1x1+y1£©x+4£¨-k1x1+y1£©2-75=0£¬
ÓÉ¡÷=0£¬µÃ[8k1£¨-k1x1+y1£©]2-4£¨4${{k}_{1}}^{2}$+3£©[4£¨-k1x1+y1£©2-75]=0£¬
»¯¼ò£¬µÃ£¨$4{{x}_{1}}^{2}-100$£©${{k}_{1}}^{2}-8{x}_{1}{y}_{1}{k}_{1}+4{{y}_{1}}^{2}-75=0$£¬
ÓÉ$\frac{{{x}_{1}}^{2}}{25}+\frac{4{{y}_{1}}^{2}}{75}=1$£¬µÃ4x12-100=-$\frac{16}{3}{{y}_{1}}^{2}$£¬4y12-75=-3x12£¬
¡àÉÏʽ»¯Îª-$\frac{16}{3}{{y}_{1}}^{2}{{k}_{1}}^{2}-8{x}_{1}{y}_{1}{k}_{1}-3{{x}_{1}}^{2}$=0£¬
¡à£¨4y1k1+3x1£©2=0£¬${k}_{1}=-\frac{3{x}_{1}}{4{y}_{1}}$£¬
¡àÍÖÔ²ÔÚµãA´¦µÄÇÐÏß·½³ÌΪ$\frac{x{x}_{1}}{25}+\frac{4y{y}_{1}}{75}$=1£¬¢Ù
ͬÀí£¬µÃÍÖÔ²ÔÚµãB´¦µÄÇÐÏß·½³ÌΪ$\frac{x{x}_{2}}{25}+\frac{4y{y}_{2}}{75}$=1£¬¢Ú
ÁªÁ¢¢Ù¢Ú£¬ÏûÈ¥x£¬µÃ£º$\frac{1-\frac{4y{y}_{1}}{75}}{1-\frac{4y{y}_{2}}{75}}=\frac{{x}_{1}}{{x}_{2}}$£¬½âµÃy=$\frac{75£¨{x}_{2}-{x}_{1}£©}{4£¨{x}_{2}{y}_{1}-{x}_{1}{y}_{2}£©}$£¬
¡ßA¡¢B¶¼ÔÚÖ±ÏßlÉÏ£¬¡à$\left\{\begin{array}{l}{{y}_{2}=k{x}_{2}+3}\\{{y}_{1}=k{x}_{1}+3}\end{array}\right.$£¬¡àx2y1-x1y2=3x2-3x1£¬
¡ày=$\frac{7£¨5{x}_{2}-{x}_{1}£©}{4£¨{x}_{2}{y}_{1}-{x}_{1}{y}_{2}£©}$=$\frac{7£¨5{x}_{2}-{x}_{1}£©}{12£¨{x}_{2}-{x}_{1}£©}$=$\frac{25}{4}$£¬¼´´ËʱµÄ½»µãµÄ¹ì¼£·½³ÌΪy=$\frac{25}{4}$£®
µ±Ö±ÏßlµÄбÂʲ»´æÔÚʱ£¬Ö±Ïߵķ½³ÌΪx=0£¬ÔòA£¨0£¬$\frac{5\sqrt{3}}{2}$£©£¬B£¨0£¬-$\frac{5\sqrt{3}}{2}$£©£¬
ÔòÍÖÔ²ÔÚµãA´¦µÄÇÐÏß·½³ÌΪy=$\frac{5\sqrt{3}}{2}$£¬ÍÖÔ²ÔÚB´¦µÄÇÐÏß·½³ÌΪy=-$\frac{5\sqrt{3}}{2}$£¬´ËʱÎÞ½»µã£®
×ÛÉÏËùÊö£¬¹ýµãA£¬BËù×÷ÍÖÔ²µÄÁ½ÌõÇÐÏߵĽ»µãµÄ¹ì¼£·½³ÌΪy=$\frac{25}{4}$£®
µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ±ê×¼·½³ÌºÍÁ½ÌõÇÐÏߵĽ»µãµÄ¹ì¼£·½³ÌµÄÇ󷨣¬¿¼²éÍÖÔ²¡¢Ë«ÇúÏß¡¢Ö±Ïß·½³Ì¡¢µÄÅбðʽ¡¢ÇÐÏß·½³ÌµÈ»ù´¡ÖªÊ¶£¬¿¼²éÍÆÀíÂÛÖ¤ÄÜÁ¦¡¢ÔËËãÇó½âÄÜÁ¦£¬¿¼²é»¯¹éÓëת»¯Ë¼Ïë¡¢º¯ÊýÓë·½³Ì˼Ï룬¿¼²é´´ÐÂÒâʶ¡¢Ó¦ÓÃÒâʶ£¬ÊÇÖеµÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\frac{\sqrt{2}}{128}$ | B£® | 12 | C£® | 2$\sqrt{2}$ | D£® | 24 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 5¸ö | B£® | 6¸ö | C£® | 7¸ö | D£® | 8¸ö |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | µÚÒ»ÏóÏÞ | B£® | µÚ¶þÏóÏÞ | C£® | µÚÈýÏóÏÞ | D£® | µÚËÄÏóÏÞ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com