18£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊΪ$\frac{1}{2}$£¬ÆäÖÐÒ»¸ö¶¥µãÊÇË«ÇúÏß$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1µÄ½¹µã£®
£¨1£©ÇóÍÖÔ²CµÄ±ê×¼·½³Ì£»
£¨2£©¹ýµãP£¨0£¬3£©µÄÖ±ÏßlÓëÍÖÔ²CÏཻÓÚ²»Í¬µÄÁ½µãA£¬B£¬¹ýµãA£¬B·Ö±ð×÷ÍÖÔ²µÄÁ½ÌõÇÐÏߣ¬ÇóÆä½»µãµÄ¹ì¼£·½³Ì£®

·ÖÎö £¨1£©ÓÉÍÖÔ²µÄÀëÐÄÂÊΪ$\frac{1}{2}$£¬ÆäÖÐÒ»¸ö¶¥µãÊÇË«ÇúÏß$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1µÄ½¹µã£¬Ñ®³ö·½³Ì×éÇó³öa£¬b£¬c£¬ÓÉ´ËÄÜÇó³öÍÖÔ²CµÄ±ê×¼·½³Ì£®
£¨2£©µ±Ö±ÏßlµÄбÂÊ´æÔÚʱ£¬ÉèÖ±ÏßlµÄ·½³ÌΪy=kx+3£¬ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬Çó³öÍÖÔ²ÔÚµãA´¦µÄÇÐÏß·½³ÌΪ$\frac{x{x}_{1}}{25}+\frac{4y{y}_{1}}{75}$=1£¬¢ÙÍÖÔ²ÔÚµãB´¦µÄÇÐÏß·½³ÌΪ$\frac{x{x}_{2}}{25}+\frac{4y{y}_{2}}{75}$=1£¬¢Ú£¬ÁªÁ¢¢Ù¢Ú£¬µÃy=$\frac{75£¨{x}_{2}-{x}_{1}£©}{4£¨{x}_{2}{y}_{1}-{x}_{1}{y}_{2}£©}$£¬Çó³ö½»µãµÄ¹ì¼£·½³ÌΪy=$\frac{25}{4}$£®µ±Ö±ÏßlµÄбÂʲ»´æÔÚʱ£¬ÎÞ½»µã£®ÓÉ´ËÄܹýÇó³ö¹ýµãA£¬BËù×÷ÍÖÔ²µÄÁ½ÌõÇÐÏߵĽ»µãµÄ¹ì¼£·½³Ì£®

½â´ð ½â£º£¨1£©¡ßÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊΪ$\frac{1}{2}$£¬ÆäÖÐÒ»¸ö¶¥µãÊÇË«ÇúÏß$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1µÄ½¹µã£®
Ë«ÇúÏß$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1µÄ½¹µãF1£¨-5£¬0£©£¬F2£¨5£¬0£©£¬
¡àÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©ÖУ¬$\left\{\begin{array}{l}{a=5}\\{\frac{c}{a}=\frac{1}{2}}\\{{a}^{2}={b}^{2}+{c}^{2}}\end{array}\right.$£¬
½âµÃa=5£¬c=$\frac{5}{2}$£¬${b}^{2}=\frac{75}{4}$£¬
¡àÍÖÔ²CµÄ±ê×¼·½³ÌΪ£º$\frac{{x}^{2}}{25}+\frac{4{y}^{2}}{75}$=1£®
£¨2£©µ±Ö±ÏßlµÄбÂÊ´æÔÚʱ£¬ÉèÖ±ÏßlµÄ·½³ÌΪy=kx+3£¬
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
ÉèÔÚA£¨x1£¬y1£©´¦ÇÐÏß·½³ÌΪy-y1=k1£¨x-x1£©£¬
ÓëÍÖÔ²C£º$\frac{{x}^{2}}{25}+\frac{4{y}^{2}}{75}$=1ÁªÁ¢$\left\{\begin{array}{l}{y-{y}_{1}={k}_{1}£¨x-{x}_{1}£©}\\{\frac{{x}^{2}}{25}+\frac{4{y}^{2}}{75}=1}\end{array}\right.$£¬
ÏûÈ¥y£¬µÃ£¨$4{{k}_{1}}^{2}+3$£©x2+8k1£¨-k1x1+y1£©x+4£¨-k1x1+y1£©2-75=0£¬
ÓÉ¡÷=0£¬µÃ[8k1£¨-k1x1+y1£©]2-4£¨4${{k}_{1}}^{2}$+3£©[4£¨-k1x1+y1£©2-75]=0£¬
»¯¼ò£¬µÃ£¨$4{{x}_{1}}^{2}-100$£©${{k}_{1}}^{2}-8{x}_{1}{y}_{1}{k}_{1}+4{{y}_{1}}^{2}-75=0$£¬
ÓÉ$\frac{{{x}_{1}}^{2}}{25}+\frac{4{{y}_{1}}^{2}}{75}=1$£¬µÃ4x12-100=-$\frac{16}{3}{{y}_{1}}^{2}$£¬4y12-75=-3x12£¬
¡àÉÏʽ»¯Îª-$\frac{16}{3}{{y}_{1}}^{2}{{k}_{1}}^{2}-8{x}_{1}{y}_{1}{k}_{1}-3{{x}_{1}}^{2}$=0£¬
¡à£¨4y1k1+3x1£©2=0£¬${k}_{1}=-\frac{3{x}_{1}}{4{y}_{1}}$£¬
¡àÍÖÔ²ÔÚµãA´¦µÄÇÐÏß·½³ÌΪ$\frac{x{x}_{1}}{25}+\frac{4y{y}_{1}}{75}$=1£¬¢Ù
ͬÀí£¬µÃÍÖÔ²ÔÚµãB´¦µÄÇÐÏß·½³ÌΪ$\frac{x{x}_{2}}{25}+\frac{4y{y}_{2}}{75}$=1£¬¢Ú
ÁªÁ¢¢Ù¢Ú£¬ÏûÈ¥x£¬µÃ£º$\frac{1-\frac{4y{y}_{1}}{75}}{1-\frac{4y{y}_{2}}{75}}=\frac{{x}_{1}}{{x}_{2}}$£¬½âµÃy=$\frac{75£¨{x}_{2}-{x}_{1}£©}{4£¨{x}_{2}{y}_{1}-{x}_{1}{y}_{2}£©}$£¬
¡ßA¡¢B¶¼ÔÚÖ±ÏßlÉÏ£¬¡à$\left\{\begin{array}{l}{{y}_{2}=k{x}_{2}+3}\\{{y}_{1}=k{x}_{1}+3}\end{array}\right.$£¬¡àx2y1-x1y2=3x2-3x1£¬
¡ày=$\frac{7£¨5{x}_{2}-{x}_{1}£©}{4£¨{x}_{2}{y}_{1}-{x}_{1}{y}_{2}£©}$=$\frac{7£¨5{x}_{2}-{x}_{1}£©}{12£¨{x}_{2}-{x}_{1}£©}$=$\frac{25}{4}$£¬¼´´ËʱµÄ½»µãµÄ¹ì¼£·½³ÌΪy=$\frac{25}{4}$£®
µ±Ö±ÏßlµÄбÂʲ»´æÔÚʱ£¬Ö±Ïߵķ½³ÌΪx=0£¬ÔòA£¨0£¬$\frac{5\sqrt{3}}{2}$£©£¬B£¨0£¬-$\frac{5\sqrt{3}}{2}$£©£¬
ÔòÍÖÔ²ÔÚµãA´¦µÄÇÐÏß·½³ÌΪy=$\frac{5\sqrt{3}}{2}$£¬ÍÖÔ²ÔÚB´¦µÄÇÐÏß·½³ÌΪy=-$\frac{5\sqrt{3}}{2}$£¬´ËʱÎÞ½»µã£®
×ÛÉÏËùÊö£¬¹ýµãA£¬BËù×÷ÍÖÔ²µÄÁ½ÌõÇÐÏߵĽ»µãµÄ¹ì¼£·½³ÌΪy=$\frac{25}{4}$£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ±ê×¼·½³ÌºÍÁ½ÌõÇÐÏߵĽ»µãµÄ¹ì¼£·½³ÌµÄÇ󷨣¬¿¼²éÍÖÔ²¡¢Ë«ÇúÏß¡¢Ö±Ïß·½³Ì¡¢µÄÅбðʽ¡¢ÇÐÏß·½³ÌµÈ»ù´¡ÖªÊ¶£¬¿¼²éÍÆÀíÂÛÖ¤ÄÜÁ¦¡¢ÔËËãÇó½âÄÜÁ¦£¬¿¼²é»¯¹éÓëת»¯Ë¼Ïë¡¢º¯ÊýÓë·½³Ì˼Ï룬¿¼²é´´ÐÂÒâʶ¡¢Ó¦ÓÃÒâʶ£¬ÊÇÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÒÑÖª¹«±ÈΪqµÄµÈ±ÈÊýÁÐ{an}ÊǵݼõÊýÁУ¬ÇÒÂú×ãa1+a3=$\frac{10}{9}$£¬a1a2a3=$\frac{1}{27}$£®
£¨¢ñ£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨¢ò£©Èôbn=$\frac{3}{2}$-log3an£¬Ö¤Ã÷£º$\frac{1}{{b}_{1}{b}_{2}}$+$\frac{1}{{b}_{2}{b}_{3}}$+¡­+$\frac{1}{{b}_{n}{b}_{n+1}}$£¼$\frac{2}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®ÉèµãPΪÅ×ÎïÏßy2=16xµÄ½¹µã£¬Ö±ÏßlÊÇÀëÐÄÂÊΪ$\sqrt{2}$µÄË«ÇúÏßµÄÒ»Ìõ½¥½üÏߣ¬ÔòµãPµ½Ö±ÏßlµÄ¾àÀëΪ£¨¡¡¡¡£©
A£®$\frac{\sqrt{2}}{128}$B£®12C£®2$\sqrt{2}$D£®24

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®ÍÖÔ²§¤£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾0£¬b£¾0£©µÄ×ó¡¢ÓÒ½¹µã·Ö±ðΪF1£¬F2£¬½¹¾àΪ2c£¬ÈôÖ±Ïßy=$\sqrt{3}$£¨x+c£©ÓëÍÖÔ²µÄÒ»¸ö½»µãÂú×ã¡ÏMF1F2=2¡ÏMF2F1£¬Ôò¸ÃÍÖÔ²µÄÀëÐÄÂʵÈÓÚ$\sqrt{3}-1$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®ÒÑÖªº¯Êýf£¨x£©=$\left\{\begin{array}{l}{|lo{g}_{5}£¨1-x£©|£¨x£¼1£©}\\{-£¨x-2£©^{2}+2£¨x¡Ý1£©}\end{array}\right.$£¬Ôò¹ØÓÚxµÄ·½³Ìf£¨x+$\frac{1}{x}$-2£©=aµÄʵ¸ù¸öÊý²»¿ÉÄÜΪ£¨¡¡¡¡£©
A£®5¸öB£®6¸öC£®7¸öD£®8¸ö

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®Èôz=$\frac{i}{2+i}$£¬Ôò¸´Êý$\overline{z}$¶ÔÓ¦µÄµãÔÚ£¨¡¡¡¡£©
A£®µÚÒ»ÏóÏÞB£®µÚ¶þÏóÏÞC£®µÚÈýÏóÏÞD£®µÚËÄÏóÏÞ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÒÑÖªº¯Êýf£¨x£©=|x-a|-2|x-1|£¨a¡ÊR£©£®
£¨1£©µ±a=3ʱ£¬Çóº¯Êýf£¨x£©µÄ×î´óÖµ£»
£¨2£©½â¹ØÓÚxµÄ²»µÈʽf£¨x£©¡Ý0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÒÑÖªÔÚ¡÷ABCÖУ¬ÄÚ½ÇA£¬B£¬CËù¶ÔµÄ±ß·Ö±ðΪa£¬b£¬c£¬ÇÒÂú×ãacosC+ccosA=2bcosB£¬b=$\sqrt{3}$
£¨1£©Çó½ÇB£»
£¨2£©Çó¡÷ABCÃæ»ýµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®ÒÑÖªµãP£¨a£¬b£©ÔÚÔ²C£ºx2+y2=x+y£¨x£¬y¡Ê£¨0£¬+¡Þ£©£©ÉÏ£¬
£¨1£©Çó$\frac{1}{a}+\frac{1}{b}$µÄ×îСֵ£»
£¨2£©ÊÇ·ñ´æÔÚa£¬b£¬Âú×㣨a+1£©£¨b+1£©=4£¿Èç¹û´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸