分析 (Ⅰ)由图象求得A及半周期,进一步求得ω,再由图象过点(-$\frac{π}{12}$,2)求得φ得答案;
(Ⅱ)利用函数的图象平移求得g(x)的解析式,再由复合函数的单调性求得y=g(x)的单调递增区间.
解答 解:(Ⅰ)由图象可知A=2,$\frac{1}{2}•\frac{2π}{ω}=\frac{5π}{12}+\frac{π}{12}=\frac{π}{2}$,∴ω=2;
∴f(x)=2sin(2x+φ),又图象的一个最高点为(-$\frac{π}{12}$,2),
∴$2•(-\frac{π}{12})+$φ=$\frac{π}{2}+2kπ$(k∈Z),解得φ=$\frac{2π}{3}+2kπ$(k∈Z),
又|φ|<π,∴φ=$\frac{2π}{3}$.
∴f(x)=2sin(2x+$\frac{2π}{3}$).
∴$g(x)=2sin[2(x-\frac{π}{6})+\frac{2π}{3}]=2sin(2x+\frac{π}{3})$;
(Ⅱ)由$-\frac{π}{2}+2kπ≤2x+\frac{π}{3}≤\frac{π}{2}+2kπ$,得$-\frac{5π}{12}+kπ≤x≤\frac{π}{12}+kπ$,k∈Z.
∴g(x)的单调增区间为[$-\frac{5π}{12}+kπ,\frac{π}{12}+kπ$](k∈Z).
点评 本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,函数y=Asin(ωx+φ)的图象变换规律,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $2\sqrt{2}$ | B. | 2 | C. | 4 | D. | $3\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a≥2 | B. | a≥-2 | C. | a≥0 | D. | a<0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com