精英家教网 > 高中数学 > 题目详情
14.定义方程f(x)=f′(x)的实数根x0叫做函数f(x)的“新零点”,若函数g(x)=x,h(x)=2lnx,ϕ(x)=x3-1的“新零点”分别为α,β,γ,则α,β,γ的大小关系为γ>β>α.

分析 分别对g(x),h(x),ϕ(x)求导,令g′(x)=g(x),h′(x)=h(x),ϕ′(x)=ϕ(x),则它们的根分别为α,β,γ,然后分别讨论α,β,γ的取值范围即可.

解答 解:∵g′(x)=1,h′(x)=$\frac{2}{x}$,ϕ′(x)=3x2
由g(x)=g′(x)得x=1,即
α=1,
由h(x)=h′(x),
得2lnx=$\frac{2}{x}$,即lnx-$\frac{1}{x}$=0,
设m(x)=lnx-$\frac{1}{x}$,在(0,+∞)上函数m(x)为增函数,
∵m(1)=0-1<0,m(2)=ln2-$\frac{1}{2}$>0,
∴1<β<2;
由ϕ(x)=ϕ′(x)得
x3-1=3x2
即x3-3x2-1=0,
设q(x)=x3-3x2-1,
则q′(x)=3x2-6x=3x(x-2),
由q′(x)>0得x>2或x<0,此时函数单调递增,
由q′(x)<0得0<x<2,此时函数单调递递减,
当x=0时,函数取得极大值q(0)=-1<0,
∵q(3)=33-3×32-1=-1<0,
∴函数q(x)=x3-3x2-1的零点γ>3,
∴γ>β>α.
故答案为 γ>β>α

点评 本题主要考查函数零点的大小比较,求函数的导数,建立方程关系,分别判断论α,β,γ的取值范围是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知角θ终边过(1,2),则sin2θ-tan2θ=(  )
A.$\frac{1}{2}$B.0C.$\frac{32}{15}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$不共线,向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为θ,若函数g(x)=(x$\overrightarrow{a}$+$\overrightarrow{b}$)•(x$\overrightarrow{b}$)(x∈R)有最小值,则(  )
A.$\overrightarrow{a}⊥\overrightarrow{b}$B.|$\overrightarrow{a}$|>|$\overrightarrow{b}$|C.θ∈(0,$\frac{π}{2}$)D.$θ∈(\frac{π}{2},π)$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.正△ABC的边长为4,CD是AB边上的高,E、F分别是AC和BC边的中点,现将△ABC沿CD翻折成直二面角A-DC-B.
(Ⅰ)试判断直线AB与平面DEF的位置关系,并说明理由;
(Ⅱ)求二面角E-DF-C的余弦值;
(Ⅲ)求四面体ABCD的外接球表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.1120°角所在象限是(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列说法错误的是(  )
A.若a,b∈R,且a+b>4,则a,b至少有一个大于2
B.“?x0∈R,${2^{x_0}}=1$”的否定是“?x∈R,2x≠1”
C.a>1,b>1是ab>1的必要条件
D.△ABC中,A是最大角,则sin2A>sin2B+sin2C是△ABC为钝角三角形的充要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=log2x,任取一个x0∈[$\frac{1}{2}$,2]使f(x0)>0的概率为(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{3}{4}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.计算:
(1)$\sqrt{{x^2}-6x+9}$-|4-x|(x<3);
(2)log2(47×25)+log26-log23;
(3)${0.0081^{\frac{1}{4}}}+{({4^{-\frac{3}{4}}})^2}+{(\sqrt{8})^{-\frac{4}{3}}}-{16^{-0.75}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知向量$\overrightarrow a$与$\overrightarrow b$的夹角为120°,$|\overrightarrow a|\;=3$,$|\overrightarrow a+\overrightarrow b|\;=\sqrt{13}$,则$|\overrightarrow b|$等于(  )
A.5B.$\sqrt{5}$C.4D.2

查看答案和解析>>

同步练习册答案