| A. | 56π | B. | 39π | C. | 36π | D. | 14π |
分析 根据题意可得长方体的三条棱长,再结合题意与有关知识可得外接球的直径就是长方体的对角线,求出长方体的对角线,即可得到球的直径,进而根据球的表面积公式求出球的表面积.
解答 解:因为长方体相邻的三个面的面积分别是2,3,6,
∴长方体的一个顶点上的三条棱长分别是3,2,1,
又因为长方体的8个顶点都在同一个球面上,
所以长方体的对角线就是圆的直径,
因为长方体的体对角线的长是:$\sqrt{1+4+9}$=$\sqrt{14}$,
球的半径是:$\frac{\sqrt{14}}{2}$
这个球的表面积:4π•($\frac{\sqrt{14}}{2}$)2=14π.
故选D.
点评 解决此类问题的关键是熟练掌握常用几何体的结构特征,以及球的内接多面体的有关知识,球的表面积公式,而解决此题的关键是知道球的直径与长方体的体对角线.
科目:高中数学 来源: 题型:选择题
| A. | p1 | B. | p1∧p2 | C. | p1∨(¬p2) | D. | (¬p1)∧p2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 9 | B. | 17 | C. | 26 | D. | 2016 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $-\frac{1}{2}$ | C. | $\frac{3}{2}$ | D. | $-\frac{3}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -36 | B. | -34 | C. | -36-$\frac{1}{{2}^{5}}$ | D. | -34-$\frac{1}{{2}^{5}}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com