精英家教网 > 高中数学 > 题目详情

已知函数f(x)=ax2+bx+1(a,b为实数).
(Ⅰ)若f(-1)=0,x∈R,且函数f(x)的值域为[0,+∞),求f(x)的表达式;
(Ⅱ)设a=1,记f(x)在(-∞,0]的最小值为g(b),求g(b).

解:(I)依题有
∴f(x)=x2+2x+1(6分)
(II)(8分)
即b≥0时,
即b<0时,fmin(x)=f(0)=1
综上述f(x)在(-∞,0]上的最小值为(12分)
分析:(I)由f(-1)=0,确定a,b的一个关系,再由函数f(x)的值域为[0,+∞),在轴处取得0,再得到a,b的一个关系,列方程组求得a,b.
(II)将a=1代入,并将函数转化找到其对称轴,再按照二次函数最值的研究方法讨论.
点评:本题主要考查解析式的求法和二次函数最值的求法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案