精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ax3+bx2+(b-a)x(a,b是不同时为零的常数),其导函数为f'(x).
(1)当a=
1
3
时,若不等式f′(x)>-
1
3
对任意x∈R恒成立,求b的取值范围;
(2)求证:函数y=f'(x)在(-1,0)内至少存在一个零点.
分析:(1)把a=
1
3
代入求导后转化为二次不等式恒成立的问题,根据二次不等式对应的二次函数开口方向及二次方程的判别式联立解决;
(2)说明函数y=f'(x)在(-1,0)内至少存在一个零点,只要在区间[-1,0]内找到两个值,使f(-1)•f(0)<0即可.
解答:解:(1)当a=
1
3
时,f(x)=
1
3
x3+bx2+(b-
1
3
)x

f(x)=x2+2bx+b-
1
3

要使对任意x∈Rf(x)>-
1
3
恒成立,即x2+2bx+b-
1
3
>-
1
3
恒成立,
也就是x2+2bx+b>0恒成立,则△=(2b)2-4b<0,解得:0<b<1.
所以不等式f′(x)>-
1
3
对任意x∈R恒成立的b的取值范围是(0,1);
(2)令g(x)=f′(x)=3ax2+2bx+b-a,
g(-1)=3a×(-1)2+2b×(-1)+b-a=2a-b,
g(0)=b-a
g(-
1
3
)=3×a×(-
1
3
)2+2b×(-
1
3
)+b-a=
b-2a
3

所以g(-1)•g(-
1
3
)=-
(b-2a)2
3
≤0

上式等号成立时说明g(-
1
3
)=0
,也满足至少有一个零点-
1
3

所以函数y=f'(x)在(-1,0)内至少存在一个零点.
点评:本题主要考查利用导数法研究函数的单调性,函数的图象和性质以及方程的根转化为函数图象的交点解决等问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案