·ÖÎö £¨¢ñ£©ÓÉÌâÒâ¿ÉµÃ$\left\{\begin{array}{l}{a^2}={b^2}+{c^2}\\ \frac{c}{a}=\frac{{\sqrt{6}}}{3}\\ ab=\sqrt{3}\end{array}\right.$£¬´Ó¶ø½âµÃÍÖÔ²CµÄ±ê×¼·½³Ì£»
£¨¢ò£©Ò×Öª$A£¨\sqrt{3}£¬0£©$£¬ÉèM£¨0£¬m£©£¬N£¨0£¬n£©£¬P£¨x0£¬y0£©£¬´Ó¶ø¿ÉµÃ$\frac{{{x_0}^2}}{3}+{y_0}^2=1$£¬ÇÒQ£¨-x0£¬-y0£©£¬$\overrightarrow{AP}=£¨{x_0}-\sqrt{3}£¬{y_0}£©$£¬$\overrightarrow{AM}$=£¨-$\sqrt{3}$£¬m£©£¬´Ó¶ø»¯¼ò¿ÉµÃ$m=\frac{{-\sqrt{3}{y_0}}}{{{x_0}-\sqrt{3}}}$£¬$n=\frac{{-\sqrt{3}{y_0}}}{{{x_0}+\sqrt{3}}}$£®¼ÙÉè´æÔÚÂú×ãÌâÒâµÄxÖáÉϵ͍µãR£¨t£¬0£©»¯¼ò¿ÉµÃt2=-$\frac{3{{y}_{0}}^{2}}{{{x}_{0}}^{2}-3}$£¬ÔÙ½áºÏ3${{y}_{0}}^{2}$=3-${{x}_{0}}^{2}$½âµÃ£®
½â´ð ½â£º£¨¢ñ£©ÒÀÌâÒ⣬µÃ$\left\{\begin{array}{l}{a^2}={b^2}+{c^2}\\ \frac{c}{a}=\frac{{\sqrt{6}}}{3}\\ ab=\sqrt{3}\end{array}\right.$
½âµÃ$\left\{\begin{array}{l}a=\sqrt{3}\\ b=1\end{array}\right.$¹ÊÍÖÔ²CµÄ±ê×¼·½³ÌΪ$\frac{x^2}{3}+{y^2}=1$£®
£¨¢ò£©$A£¨\sqrt{3}£¬0£©$£¬ÉèM£¨0£¬m£©£¬N£¨0£¬n£©£¬P£¨x0£¬y0£©£¬
ÔòÓÉÌâÒ⣬¿ÉµÃ$\frac{{{x_0}^2}}{3}+{y_0}^2=1$£¬
ÇÒQ£¨-x0£¬-y0£©£¬$\overrightarrow{AP}=£¨{x_0}-\sqrt{3}£¬{y_0}£©$£¬$\overrightarrow{AM}$=£¨-$\sqrt{3}$£¬m£©£¬
ÒòΪA£¬P£¬MÈýµã¹²Ïߣ¬ËùÒÔ$\overrightarrow{AP}¡Î\overrightarrow{AM}$£¬
¹ÊÓÐ$£¨{x_0}-\sqrt{3}£©m=-\sqrt{3}{y_0}$£¬½âµÃ$m=\frac{{-\sqrt{3}{y_0}}}{{{x_0}-\sqrt{3}}}$£®
ͬÀí£¬¿ÉµÃ$n=\frac{{-\sqrt{3}{y_0}}}{{{x_0}+\sqrt{3}}}$£®
¼ÙÉè´æÔÚÂú×ãÌâÒâµÄxÖáÉϵ͍µãR£¨t£¬0£©£¬ÔòÓÐ$\overrightarrow{RM}¡Í\overrightarrow{RN}$£¬¼´$\overrightarrow{RM}•\overrightarrow{RN}=0$£®
ÒòΪ$\overrightarrow{RM}=£¨-t£¬m£©$£¬$\overrightarrow{RN}=£¨-t£¬n£©$£¬
ËùÒÔt2+mn=0£¬¼´${t^2}+\frac{{-\sqrt{3}{y_0}}}{{{x_0}-\sqrt{3}}}¡Á\frac{{-\sqrt{3}{y_0}}}{{{x_0}+\sqrt{3}}}=0$£¬
ÕûÀíµÃ£¬t2=-$\frac{3{{y}_{0}}^{2}}{{{x}_{0}}^{2}-3}$£¬
ÓÖ¡ß3${{y}_{0}}^{2}$=3-${{x}_{0}}^{2}$£¬¡àt2=1£¬
½âµÃt=1»òt=-1£®
¹ÊÒÔMNΪֱ¾¶µÄÔ²ºã¹ýxÖáÉϵ͍µã£¨-1£¬0£©£¬£¨1£¬0£©£®
µãÆÀ ±¾Ì⿼²éÁËÖ±ÏßÓëÔ²×¶ÇúÏßµÄλÖùØÏµµÄÅжÏÓëÓ¦Óã¬Í¬Ê±¿¼²éÁËÊýÐνáºÏµÄ˼Ï뼰ѧÉúµÄ»¯¼òÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 7 | B£® | 8 | C£® | 8.5 | D£® | 9 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\frac{32}{5}$ | B£® | 4 | C£® | $\frac{16}{5}$ | D£® | $\frac{8}{5}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $-\frac{4}{3}$ | B£® | $-\frac{5}{3}$ | C£® | $-\frac{3}{5}$ | D£® | $-\frac{5}{4}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com