13£®ÒÔÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾0£¬b£¾0£©µÄÀëÐÄÂÊΪ$\frac{\sqrt{6}}{3}$£¬ÒÔÆäËĸö¶¥µãΪ¶¥µãµÄËıßÐεÄÃæ»ýµÈÓÚ2$\sqrt{3}$£®
£¨¢ñ£©ÇóÍÖÔ²CµÄ±ê×¼·½³Ì£»
£¨¢ò£©¹ýÔ­µãÇÒбÂʲ»Îª0µÄÖ±ÏßlÓëÍÖÔ²C½»ÓÚP£¬QÁ½µã£¬AÊÇÍÖÔ²CµÄÓÒ¶¥µã£¬Ö±ÏßAP£¬AQ·Ö±ðÓëyÖá½»ÓÚµãM£¬N£¬ÎÊ£ºÒÔMNΪֱ¾¶µÄÔ²ÊÇ·ñºã¹ýxÖáÉϵ͍µã£¿Èôºã¹ýxÖáÉϵ͍µã£¬ÇëÇó³ö¸Ã¶¨µãµÄ×ø±ê£»Èô²»ºã¹ýxÖáÉϵ͍µã£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨¢ñ£©ÓÉÌâÒâ¿ÉµÃ$\left\{\begin{array}{l}{a^2}={b^2}+{c^2}\\ \frac{c}{a}=\frac{{\sqrt{6}}}{3}\\ ab=\sqrt{3}\end{array}\right.$£¬´Ó¶ø½âµÃÍÖÔ²CµÄ±ê×¼·½³Ì£»
£¨¢ò£©Ò×Öª$A£¨\sqrt{3}£¬0£©$£¬ÉèM£¨0£¬m£©£¬N£¨0£¬n£©£¬P£¨x0£¬y0£©£¬´Ó¶ø¿ÉµÃ$\frac{{{x_0}^2}}{3}+{y_0}^2=1$£¬ÇÒQ£¨-x0£¬-y0£©£¬$\overrightarrow{AP}=£¨{x_0}-\sqrt{3}£¬{y_0}£©$£¬$\overrightarrow{AM}$=£¨-$\sqrt{3}$£¬m£©£¬´Ó¶ø»¯¼ò¿ÉµÃ$m=\frac{{-\sqrt{3}{y_0}}}{{{x_0}-\sqrt{3}}}$£¬$n=\frac{{-\sqrt{3}{y_0}}}{{{x_0}+\sqrt{3}}}$£®¼ÙÉè´æÔÚÂú×ãÌâÒâµÄxÖáÉϵ͍µãR£¨t£¬0£©»¯¼ò¿ÉµÃt2=-$\frac{3{{y}_{0}}^{2}}{{{x}_{0}}^{2}-3}$£¬ÔÙ½áºÏ3${{y}_{0}}^{2}$=3-${{x}_{0}}^{2}$½âµÃ£®

½â´ð ½â£º£¨¢ñ£©ÒÀÌâÒ⣬µÃ$\left\{\begin{array}{l}{a^2}={b^2}+{c^2}\\ \frac{c}{a}=\frac{{\sqrt{6}}}{3}\\ ab=\sqrt{3}\end{array}\right.$
½âµÃ$\left\{\begin{array}{l}a=\sqrt{3}\\ b=1\end{array}\right.$¹ÊÍÖÔ²CµÄ±ê×¼·½³ÌΪ$\frac{x^2}{3}+{y^2}=1$£®
£¨¢ò£©$A£¨\sqrt{3}£¬0£©$£¬ÉèM£¨0£¬m£©£¬N£¨0£¬n£©£¬P£¨x0£¬y0£©£¬
ÔòÓÉÌâÒ⣬¿ÉµÃ$\frac{{{x_0}^2}}{3}+{y_0}^2=1$£¬
ÇÒQ£¨-x0£¬-y0£©£¬$\overrightarrow{AP}=£¨{x_0}-\sqrt{3}£¬{y_0}£©$£¬$\overrightarrow{AM}$=£¨-$\sqrt{3}$£¬m£©£¬
ÒòΪA£¬P£¬MÈýµã¹²Ïߣ¬ËùÒÔ$\overrightarrow{AP}¡Î\overrightarrow{AM}$£¬
¹ÊÓÐ$£¨{x_0}-\sqrt{3}£©m=-\sqrt{3}{y_0}$£¬½âµÃ$m=\frac{{-\sqrt{3}{y_0}}}{{{x_0}-\sqrt{3}}}$£®
ͬÀí£¬¿ÉµÃ$n=\frac{{-\sqrt{3}{y_0}}}{{{x_0}+\sqrt{3}}}$£®
¼ÙÉè´æÔÚÂú×ãÌâÒâµÄxÖáÉϵ͍µãR£¨t£¬0£©£¬ÔòÓÐ$\overrightarrow{RM}¡Í\overrightarrow{RN}$£¬¼´$\overrightarrow{RM}•\overrightarrow{RN}=0$£®
ÒòΪ$\overrightarrow{RM}=£¨-t£¬m£©$£¬$\overrightarrow{RN}=£¨-t£¬n£©$£¬
ËùÒÔt2+mn=0£¬¼´${t^2}+\frac{{-\sqrt{3}{y_0}}}{{{x_0}-\sqrt{3}}}¡Á\frac{{-\sqrt{3}{y_0}}}{{{x_0}+\sqrt{3}}}=0$£¬
ÕûÀíµÃ£¬t2=-$\frac{3{{y}_{0}}^{2}}{{{x}_{0}}^{2}-3}$£¬
ÓÖ¡ß3${{y}_{0}}^{2}$=3-${{x}_{0}}^{2}$£¬¡àt2=1£¬
½âµÃt=1»òt=-1£®
¹ÊÒÔMNΪֱ¾¶µÄÔ²ºã¹ýxÖáÉϵ͍µã£¨-1£¬0£©£¬£¨1£¬0£©£®

µãÆÀ ±¾Ì⿼²éÁËÖ±ÏßÓëÔ²×¶ÇúÏßµÄλÖùØÏµµÄÅжÏÓëÓ¦Óã¬Í¬Ê±¿¼²éÁËÊýÐνáºÏµÄ˼Ï뼰ѧÉúµÄ»¯¼òÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÇóµÈ²îÊýÁÐ-1£¬3£¬7£¬11£¬¡­µÄǰ8ÏîµÄºÍ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®Èçͼ£¬Ö±ÈýÀâÖùABC-A1B1C1ÖУ¬DÊÇABµÄÖе㣮
£¨1£©Ö¤Ã÷£ºBC1¡ÎÆ½ÃæA1CD£»
£¨2£©ÉèAA1=AC=CB=2£¬AB=2$\sqrt{2}$£¬ÇóÒìÃæÖ±ÏßBC1ÓëA1DËù³É½ÇµÄ´óС£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®ÈýÀâ×¶P-ABCµÄËĸö¶¥µã¶¼Ôڰ뾶Ϊ5µÄÇòÃæÉÏ£¬µ×ÃæABCËùÔÚµÄÐ¡Ô²Ãæ»ýΪ9¦Ð£¬Ôò¸ÃÈýÀâ×¶µÄ¸ßµÄ×î´óֵΪ£¨¡¡¡¡£©
A£®7B£®8C£®8.5D£®9

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®¹ýM£¨1£¬3£©ÒýÔ²x2+y2=2µÄÇÐÏߣ¬Çеã·Ö±ðΪA¡¢B£¬Ôò¡÷AMBµÄÃæ»ýΪ£¨¡¡¡¡£©
A£®$\frac{32}{5}$B£®4C£®$\frac{16}{5}$D£®$\frac{8}{5}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®ÒÑÖªº¯Êý$f£¨x£©=\frac{1}{3}{x^3}+{x^2}+ax+1$£¬Èôº¯Êýf£¨x£©ÔÚÇø¼ä[-2£¬a]Éϵ¥µ÷µÝÔö£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ[1£¬+¡Þ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®ÒÑÖªÔ²µÄ·½³ÌΪx2+y2-8x+15=0£¬ÈôÖ±Ïßy=kx+2ÉÏÖÁÉÙ´æÔÚÒ»µã£¬Ê¹µÃÒԸõãΪԲÐÄ£¬°ë¾¶Îª1µÄÔ²ÓëÔ²CÓй«¹²µã£¬ÔòkµÄ×îСֵÊÇ£¨¡¡¡¡£©
A£®$-\frac{4}{3}$B£®$-\frac{5}{3}$C£®$-\frac{3}{5}$D£®$-\frac{5}{4}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÒÑÖªÍÖÔ²$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨a£¾b£¾0£©$µÄÀëÐÄÂÊΪ$\frac{1}{2}$£¬ÇÒ¹ýµã$£¨1£¬\frac{3}{2}£©$£¬Æä³¤ÖáµÄ×óÓÒÁ½¸ö¶Ëµã·Ö±ðΪA£¬B£¬Ö±Ïßl£ºy=$\frac{3}{2}$x+m½»ÍÖÔ²ÓÚÁ½µãC£¬D£®
£¨¢ñ£©ÇóÍÖÔ²µÄ±ê×¼·½³Ì£»
£¨¢ò£©ÉèÖ±ÏßAD£¬CBµÄбÂÊ·Ö±ðΪk1£¬k2£¬Èôk1£ºk2=2£º1£¬ÇómµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®Éèa£¾0£¬Èô$\underset{lim}{n¡ú¡Þ}$$\frac{1+\frac{1}{2}+\frac{1}{{2}^{2}}+\frac{1}{{2}^{3}}+¡­+\frac{1}{{2}^{n-1}}}{1+a+{a}^{2}+¡­{a}^{n-1}}$$¡Ü\frac{1}{2}$£¬ÔòaµÄȡֵ·¶Î§ÊÇ[$\frac{3}{4}$£¬+¡Þ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸