精英家教网 > 高中数学 > 题目详情
15.已知函数f(x)=$\sqrt{3}$sin$\frac{π}{t}$x,若存在f(x)的两个相邻的最值点,x1,x2满足(x1-x22-2[f(x1)]2-2[f(x2)]2<t,则实数t的取值范围是(0,1).

分析 不妨设x2>x1,f(x1)=$\sqrt{3}$,f(x2)=-$\sqrt{3}$,由题意可得t2<t,从而求得t的范围.

解答 解:不妨设x2>x1,f(x1)=$\sqrt{3}$,f(x2)=-$\sqrt{3}$,
由题意可得 x2-x1 =$\frac{1}{2}$•$\frac{2π}{\frac{π}{t}}$=t.
由(x1-x22-2[f(x1)]2-2[f(x2)]2<t,可得t2-2(3-3)<t,
解得0<t<1,
故答案为:(0,1).

点评 本题主要考查正弦函数的图象特征,正弦函数的周期性和最值,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5. 如图,四棱柱ABCD-A1B1C1D1中,底面四边形ABCD为菱形,∠ABC=60°,AA1=AC=2,A1B=A1D=2$\sqrt{2}$,点E在线段A1D上.
(Ⅰ)证明:AA1⊥平面ABCD;
(Ⅱ)当$\frac{{A}_{1}E}{ED}$为何值时,A1B∥平面EAC,并求出此时三棱锥E-ACD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.定义在(-2,2)上的奇函数f(x)恰有3个零点,当x∈(0,2)时,f(x)=xlnx-a(x-1)(a>0),则a的取值范围是{a|a≥2ln2,或a=1}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知f(x)=ax3+b3$\sqrt{x}$+4(a,b∈R),f[lg(log32)]=1,则f[lg(log23)]的值为(  )
A.-1B.3C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在复平面内,复数$\frac{2+i}{2i}$对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.试用三角比的定义证明:$\frac{tanθ+tanθ•sinθ}{tanθ+sinθ}$•$\frac{1+secθ}{1+cscθ}$=tanθ

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1,(a>b>0),点B是其下顶点,直线x+3y+6=0与椭圆C交于A,B两点(点A在x轴下方),且线段AB的中点E在直线y=x上.
(I)求椭圆C的方程;
(Ⅱ)若点P为椭圆C上异于A,B的动点,且直线AP,BP分别交直线y=x于点M,N,证明:$\overrightarrow{OM}$•$\overrightarrow{ON}$为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)=$\left\{\begin{array}{l}{f(x-3),x>0}\\{{e}^{x}+lo{g}_{2}[{8}^{x+1}×(\frac{1}{4})^{-2}],x≤0}\end{array}\right.$,则f(6)=8.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在△ABC中,已知a2=b(b+c),则$\frac{A}{B}$=2.

查看答案和解析>>

同步练习册答案