精英家教网 > 高中数学 > 题目详情
已知集合A={x|-1<x<7},B={x|x>a},若A∩B=∅,求实数a的取值范围.
考点:交集及其运算
专题:集合
分析:利用交集定义和不等式性质求解.
解答: 解:∵集合A={x|-1<x<7},B={x|x>a},A∩B=∅,
∴a≥7.
∴实数a的取值范围是[7,+∞).
点评:本题考查实数的取值范围的求法,解题时要认真审题,注意交集定义的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

24x+1-17×4x+8=0.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,过圆O的直径AC的端点A作直线AB、AD分别交圆O于另一点B和点D,过点D作DE⊥AB于E,已知∠EAD=∠CAD.
(Ⅰ)求证:DE是圆O的切线;
(Ⅱ)若DE=6,AE=3,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
a
x
+lnx(a>0).
(1)判断函数f(x)在(0,e]上的单调性(e为自然对数的底);
(2)记f′(x)为f(x)的导函数,若函数g(x)=x3-
a
2
x2+x2f′(x)在区间(
1
2
,3)上存在极值,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(
2
x+a的反函数f-1(x)的图象过原点.
(1)若f-1(x-3),f-1
2
-1),f-1(x-4)成等差数列,求x的值;
(2)若互不相等的三个正数m、n、t成等比数列,问f-1(m),f-1(t),f-1(n)能否组成等差数列,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的焦距为2
3
,离心率为
3
2
,l是过点B(0,b)且斜率为k的直线.
(1)求椭圆的方程;
(2)若l交C于另一点D,交x轴于点E,且BD,BE,DE成等比数列,求k2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,已知矩形ABCD的长为2,宽为1,AB、AD边分别在x轴、y轴的正半轴上,A点与坐标原点重合(如图所示).将矩形折叠,使A点落在线段DC上.
(1)若折痕斜率为-1,求折痕所在的直线方程;
(2)若折痕所在直线的斜率为k,试求折痕所在直线的方程;
(3)当-2+
3
≤k≤0时,求折痕长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=lnx+
m
x
,m∈R.
(Ⅰ)当m=e(e为自然对数的底数)时,求f(x)的极小值;
(Ⅱ)讨论函数g(x)=f′(x)-
x
3
零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

某地区重视环境保护,绿色植被面积呈上升趋势,经过调查,现有森林面积为10000m2,每年增长10%,经过x年,森林面积为ym2
(1)写出x,y之间的函数关系式;
(2)求出经过10年后森林的面积.(可借助于计算器)

查看答案和解析>>

同步练习册答案