精英家教网 > 高中数学 > 题目详情
2.如图,四棱锥P-ABCD中,底面ABCD是矩形,AD⊥PD,BC=1,PD=CD=2,∠PDC=120°.
(Ⅰ)证明平面PDC⊥平面ABCD;
(Ⅱ)求直线PB与平面ABCD所成角的正弦值.

分析 (Ⅰ)证明AD⊥CD,AD⊥PD,推出AD⊥平面PDC,然后证明平面PCD⊥平面ABCD.
(Ⅱ)在平面PCD内,过点P作PE⊥CD交直线CD于点E,连接EB,说明∠PBE为直线PB与平面ABCD所成的角,通过在Rt△PEB中,求解sin∠PBE=$\frac{PE}{PB}$,推出结果.

解答 (Ⅰ)证明:由于底面ABCD是矩形,
故AD⊥CD,又由于AD⊥PD,CD∩PD=D,
因此AD⊥平面PDC,而AD?平面ABCD,
所以平面PCD⊥平面ABCD.…6分;
(Ⅱ)解:在平面PCD内,过点P作PE⊥CD交直线CD于点E,连接EB,
由于平面PCD⊥平面ABCD,而直线CD是平面PCD与平面ABCD的交线,
故PE⊥平面ABCD,由此得∠PBE为直线PB与平面ABCD所成的角…8分
在△PDC中,由于PD=CD=2,∠PDC=120°,知∠PDE=60°.,
在Rt△PEC中,PE=PDsin60°=3,DE=12,PD=1,
且BE=$\sqrt{B{C}^{2}+C{E}^{2}}$=$\sqrt{1+{3}^{2}}$=$\sqrt{10}$,
故在Rt△PEB中,PB=$\sqrt{P{E}^{2}+B{E}^{2}}$=$\sqrt{13}$,sin∠PBE=$\frac{PE}{PB}$=$\frac{\sqrt{39}}{13}$.
所以直线PB与平面ABCD所成的角的正弦值为$\frac{\sqrt{39}}{13}$.…12分.

点评 本题考查直线与平面垂直,平面与平面垂直的判定定理的应用,直线与平面所成角的求法,考查空间想象能力以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知数列{an}满足a1=2,an+1=2an-1
(1)求证数列{an-1}是等比数列
 (2)设bn=n•(an-1),求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设正项等比数列{an}的前n项和为Sn,且$\frac{{{a_{n+1}}}}{a_n}<1$,若a3+a5=20,a2a6=64,则S4=(  )
A.63或126B.252C.120D.63

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知tanα=-3,求下列各式的值
(1)$\frac{1}{sinαcosα+1+cos2α}$
(2)$\frac{3sinα-3cosα}{6cosα+sinα}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在直三棱柱ABC-A1B1C1中,AB⊥侧面BB1C1C,AB1与A1B相交于点D,E是CC1上的点,且DE∥平面ABC,BC=1,BB1=2.
(Ⅰ)证明:B1E⊥平面ABE
(Ⅱ)若异面直线AB和A1C1所成角的正切值为$\frac{\sqrt{2}}{2}$,求二面角A-B1E-A1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若x,y满足$\left\{\begin{array}{l}2x-y+2≥0\;\\ x-y+2≥0\;,\;\\ y≥0\;\end{array}\right.$且z=-kx+y有最大值,则k的取值范围为(  )
A.k≤1B.1≤k≤2C.k≥1D.k≥2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知sin(π-α)>0,且cos(π+α)>0,则角α所在的象限是(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.如果x、y满足不等式组$\left\{{\begin{array}{l}{1≤|x|≤2}\\{y≥3}\\{x+y≤5}\end{array}}\right.$,那么目标函数z=x-y的最小值是-9.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设a∈R,若直线l1:ax+2y-8=0与直线l2:x+(a+1)y+4=0平行,则a的值为(  )
A.1B.1或-2C.-2或-1D.-1

查看答案和解析>>

同步练习册答案