精英家教网 > 高中数学 > 题目详情
13.设正项等比数列{an}的前n项和为Sn,且$\frac{{{a_{n+1}}}}{a_n}<1$,若a3+a5=20,a2a6=64,则S4=(  )
A.63或126B.252C.120D.63

分析 设正项等比数列{an}公比为q,且0<q=$\frac{{{a_{n+1}}}}{a_n}<1$,根据a3+a5=20,a2a6=64=a3a5,解得a3=16,a5=4.可得q2=$\frac{1}{4}$,0<q<1,解得q,a1,利用求和公式即可得出.

解答 解:设正项等比数列{an}公比为q,且0<q=$\frac{{{a_{n+1}}}}{a_n}<1$,
∵a3+a5=20,a2a6=64=a3a5
解得a3=16,a5=4.
∴q2=$\frac{1}{4}$,0<q<1,解得q=$\frac{1}{2}$,
∴${a}_{1}×\frac{1}{4}$=16,解得a1=64.
则S4=$\frac{64[1-(\frac{1}{2})^{4}]}{1-\frac{1}{2}}$=120.
故选:C.

点评 本题考查了等比数列的通项公式与求和公式、单调性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知i是虚数单位,则复数$\frac{3+i}{1-i}$在复平面内所对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.正方体ABCD-A1B1C1D1的棱长为$\sqrt{3}$,动点P在对角线BD1上,过点P作垂直于BD1的平面α,平面α截正方体的表面得到一个多边形,记这样得到的截面多边形(含三角形)的周长为y,设BP=x,当$x∈[{\frac{1}{3},\frac{5}{2}}]$时,函数y=f(x)的值域为(  )
A.[1,3]B.[$\sqrt{6}$,3$\sqrt{6}$]C.[$\frac{3\sqrt{6}}{2}$,4$\sqrt{6}$]D.[$\sqrt{6}$,4$\sqrt{6}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列函数中,最小正周期为π的偶函数是(  )
A.y=sinx+cosxB.y=cos4x-sin4xC.y=cos|x|D.y=$\frac{tanx}{1-ta{n}^{2}x}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在平面直角坐标系xOy中,以Ox轴为始边作两个锐角α,β,它们的终边分别与单位圆相交于A,B两点,已知A,B的横坐标分别为$\frac{{\sqrt{2}}}{10}$,$\frac{{2\sqrt{5}}}{5}$.
(Ⅰ)求sin(α-β)的值;
(Ⅱ)求α+2β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.8个不同的球放入三个相同的盒子中,问有多少种不同的放法?(  )
A.1094B.966C.5796D.6561

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若向量$\overrightarrow{a}$=(1,1),$\overrightarrow{b}$=(1,-1),$\overrightarrow{c}$=(-1,2),则c=(  )
A.$\frac{3}{2}$$\overrightarrow{a}$-$\frac{1}{2}$$\overrightarrow{b}$B.-$\frac{3}{2}$$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow{b}$C.-$\frac{1}{2}$$\overrightarrow{a}$+$\frac{3}{2}$$\overrightarrow{b}$D.$\frac{1}{2}$$\overrightarrow{a}$-$\frac{3}{2}$$\overrightarrow{b}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,四棱锥P-ABCD中,底面ABCD是矩形,AD⊥PD,BC=1,PD=CD=2,∠PDC=120°.
(Ⅰ)证明平面PDC⊥平面ABCD;
(Ⅱ)求直线PB与平面ABCD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在(1+x)n的展开式中,若第三项和第七项的系数相等,则n=8.

查看答案和解析>>

同步练习册答案