精英家教网 > 高中数学 > 题目详情
14.已知sin(π-α)>0,且cos(π+α)>0,则角α所在的象限是(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 根据诱导公式化简即可判断.

解答 解:∵sinα=sin(π-α)>0,
cosα=-cos(π+α)<0,
则α是第二象限角,
故选:B.

点评 本题考查三角函数值的符号,牢记:一全正、二正弦、三正切、四余弦是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.正方体ABCD-A1B1C1D1的棱长为$\sqrt{3}$,动点P在对角线BD1上,过点P作垂直于BD1的平面α,平面α截正方体的表面得到一个多边形,记这样得到的截面多边形(含三角形)的周长为y,设BP=x,当$x∈[{\frac{1}{3},\frac{5}{2}}]$时,函数y=f(x)的值域为(  )
A.[1,3]B.[$\sqrt{6}$,3$\sqrt{6}$]C.[$\frac{3\sqrt{6}}{2}$,4$\sqrt{6}$]D.[$\sqrt{6}$,4$\sqrt{6}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若向量$\overrightarrow{a}$=(1,1),$\overrightarrow{b}$=(1,-1),$\overrightarrow{c}$=(-1,2),则c=(  )
A.$\frac{3}{2}$$\overrightarrow{a}$-$\frac{1}{2}$$\overrightarrow{b}$B.-$\frac{3}{2}$$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow{b}$C.-$\frac{1}{2}$$\overrightarrow{a}$+$\frac{3}{2}$$\overrightarrow{b}$D.$\frac{1}{2}$$\overrightarrow{a}$-$\frac{3}{2}$$\overrightarrow{b}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,四棱锥P-ABCD中,底面ABCD是矩形,AD⊥PD,BC=1,PD=CD=2,∠PDC=120°.
(Ⅰ)证明平面PDC⊥平面ABCD;
(Ⅱ)求直线PB与平面ABCD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知双曲线${x^2}-\frac{y^2}{b^2}=1\;\;(b>0)$的离心率为2,则b=$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.$\frac{sin47°-sin13°}{sin17°}$的值为(  )
A.$\sqrt{3}$B.1C.-$\sqrt{3}$D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若圆C:x2+y2-2x+4y-20=0上有四个不同的点到直线l:4x+3y+c=0的距离为2,则c的取值范围是(  )
A.(-12,8)B.(-8,12)C.(-13,17)D.(-17,13)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在(1+x)n的展开式中,若第三项和第七项的系数相等,则n=8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知sinα=$\frac{2}{3}$,α∈($\frac{π}{2}$,$\frac{3π}{2}$),则cos(π-α)等于(  )
A.-$\frac{\sqrt{5}}{3}$B.-$\frac{1}{9}$C.$\frac{1}{9}$D.$\frac{\sqrt{5}}{3}$

查看答案和解析>>

同步练习册答案