精英家教网 > 高中数学 > 题目详情
12.五边形ABCDE的各顶点将其外接圆圆周分成1:2:3:4:5五部分,求五边形ABCDE的各内角的大小.

分析 设各段的弧度为:x,2x,3x,4x,5x,进而可得五边形ABCDE各个角所对的优弧度数,进而根据圆周角定理得到五边形ABCDE各个内角的大小.

解答 解:由已知中五边形ABCDE的各顶点将其外接圆圆周分成1:2:3:4:5五部分,
故设各段的弧度为:x,2x,3x,4x,5x,
则x+2x+3x+4x+5x=15x=360°,
解得:x=24°,
故五边形ABCDE各个角所对的优弧度数分别为:336°,312°,288°,264°,240°,
故五边形ABCDE各个内角的大小分别为:168°,156°,144°,132°,120°.

点评 本题考查的知识点是圆周角定理,方程思想,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$(a>b>0)的左,右焦点分别为F1(-1,0),F2(1,0),点P为椭圆上任意一点,且△PF1F2的内切圆面积的最大值为$\frac{1}{3}$π.
(Ⅰ)求椭圆C的方程;
(Ⅱ)直线l:y=kx+b(k>0,b>0)是圆O:x2+y2=3的一条切线,且l与椭圆C交于不同的两点A,B.若弦AB的长为$\frac{4\sqrt{6}}{7}$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)经过点(0,$\sqrt{2}$),离心率为$\frac{\sqrt{6}}{3}$,点O为坐标原点.
(Ⅰ)求椭圆E的标准方程;
(Ⅱ)过左焦点F任作一直线l,交椭圆E于P、Q两点.
  (i)求$\overrightarrow{OP}$•$\overrightarrow{OQ}$的取值范围;
  (ii)若直线l不垂直于坐标轴,记弦PQ的中点为M,过F作PQ的垂线FN交直线OM于点N,证明:点N在一条定直线上.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知a、b为正实数,若对任意x∈(0,+∞),不等式(a+b)x-1≤x2恒成立.
(1)求$\frac{1}{a}+\frac{1}{b}$的最小值;
(2)试判断点P(1,-1)与椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$的位置关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知椭圆$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(α=2b>0),直线l过点A(2a,0),B(0,2b),原点O到直线AB的距离为$\frac{4\sqrt{5}}{5}$.
(1)求椭圆的方程;
(2)是否存在过点P(0,2)的直线l与椭圆交于N,M两点,且使$\overrightarrow{QM}$=(λ+1)$\overrightarrow{QN}$-$λ\overrightarrow{QP}$成立(Q为直线l外的一点,λ>0)?若存在,求λ的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若圆x2+y2+2x-4y=0关于直线3x+y+m=0对称,则实数m的值为(  )
A.-3B.-1C.1D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知圆心为C的圆经过点A(0,2)和B(1,1),且圆心C在直线l:x+y+5=0上.
(1)求圆C的标准方程;
(2)若P(x,y)是圆C上的动点,求3x-4y的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,△ABC的外接圆为⊙O,延长CB至Q,再延长QA至P,且QA为⊙O的切线
(1)求证:QC2-QA2=BC•QC
(2)若AC恰好为∠BAP的平分线,AB=10,AC=15,求QA的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,已知F1(0,-1),F2(0,1)为椭圆Γ:$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{{b}^{2}}$=1(a>b>0)的两个焦点,过F1作两条倾斜角互补的直线l1,l2,l1,l2分别与椭圆Γ相交于A,B,C,D四点,且△ABF2的周长为8.
(Ⅰ)求椭圆Γ的方程;
(Ⅱ)求阴影部分S的最大值;
(Ⅲ)求证:直线AD与直线BC的交点是定点.

查看答案和解析>>

同步练习册答案