精英家教网 > 高中数学 > 题目详情
1.如图,△ABC的外接圆为⊙O,延长CB至Q,再延长QA至P,且QA为⊙O的切线
(1)求证:QC2-QA2=BC•QC
(2)若AC恰好为∠BAP的平分线,AB=10,AC=15,求QA的长度.

分析 (1)由切线定理得QA2=QB•QC,由此能证明QC2-QA2=BC•QC.
(2)由弦切角定理和角平分线性质得QC2=QA2=15QC,△QCA∽△QAB,由此能求出QA的长度.

解答 证明:(1)∵QA为⊙O的切线,
∴QA2=QB•QC,
∵QC-QB=BC,
∴QC2-QA2=QC2-QB•QC=BC•QC.
解:(2)∵QA为⊙O的切线,∴∠PAC=∠ABC,
∵AC恰好为∠BAP的平分线,∴∠BAC=∠ABC,
∴AC=BC=15,
∴QC2=QA2=15QC,①
又由△QCA∽△QAB,得$\frac{QC}{QA}=\frac{AC}{AB}=\frac{15}{10}$,②
联合①②,消掉QC,得:QA=18.

点评 本题考查两线段平差等于两线段积的证明,考查线段长的求法,是中档题,解题时要认真审题,注意切线定理、弦切角定理的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知集合A={x|x2-8x+12≤0},B={x|5-2m≤x≤m+1}.
(1)当m=3时,求集合A∩B,A∪B;
(2)若B⊆A,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.五边形ABCDE的各顶点将其外接圆圆周分成1:2:3:4:5五部分,求五边形ABCDE的各内角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若l,m,n是不相同的空间直线,α,β是不重合的两个平面,则下列命题正确的是(  )
A.l⊥α,m⊥β,l⊥m⇒α⊥βB.l∥m,m⊆α⇒l∥α
C.l⊆α,m⊆α,l∥β,m∥β⇒α∥βD.l⊥n,m⊥n⇒l∥m

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在圆柱OO1中,ABCD是其轴截面,EF⊥CD于O1(如图所示),AB=2,BC=$\sqrt{2}$.
(1)设平面BEF与⊙O所在的平面的交线为l,平面ABE与⊙O1所在的平面的交线为m,证明:l⊥m;
(2)求二面A-BE-F的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点为F2(1,0),点H(3,0)在椭圆上
(1)求椭圆的方程;
(2)点M在圆x2+y2=b2上,且M在第一象限,过M作圆x2+y2=b2的切线交椭圆于P,Q两点,求证:△PF2Q的周长是定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知命题p:?x∈R,|x|<0,则¬p是(  )
A.?x∈R,|x|≥0B.?x∈R,|x|>0C.?x∈R,|x|≥0D.?x∈R,|x|<0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在数列{an}中,若a1=1,an+1=an+$\frac{1}{a_n}$,则a4=$\frac{29}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.一个正三棱锥的正视图及俯视图如图所示,则该三棱锥的左视图的面积为(  )
A.6B.$\frac{3\sqrt{3}}{2}$C.$\frac{2\sqrt{21}}{3}$D.$\sqrt{10}$

查看答案和解析>>

同步练习册答案