精英家教网 > 高中数学 > 题目详情
2.已知直线y=kx-1与双曲线x2-y2=4,试讨论实数k的取值范围,使直线与双曲线
(1)没有公共点
(2)有两个公共点
(3)只有一个公共点
(4)交于异支两点
(5)交于右支两点.

分析 将直线方程代入双曲线方程,化为关于x的方程,利用方程的判别式,即可求得k的取值范围.

解答 解:由题意,直线y=kx-1代入双曲线x2-y2=4,可得x2-(kx-1)2=4,整理得(1-k2)x2+2kx-5=0.
(1)没有公共点,△=20-16k2<0,解得k>$\frac{\sqrt{5}}{2}$或k<-$\frac{\sqrt{5}}{2}$;
(2)有两个公共点,△=20-16k2>0,解得-$\frac{\sqrt{5}}{2}$<k<$\frac{\sqrt{5}}{2}$;
(3)只有一个公共点,当1-k2=0,k=±1时,符合条件;当1-k2≠0时,由△=20-16k2=0,解得k=±$\frac{\sqrt{5}}{2}$;
(4)交于异支两点,$\frac{-5}{1-{k}^{2}}$<0,解得-1<k<1;
(5)交于右支两点,△=20-16k2>0且$\frac{-5}{1-{k}^{2}}$>0,$\frac{-2k}{1-{k}^{2}}$>0,解得1<k<$\frac{\sqrt{5}}{2}$.

点评 本题考查直线与圆锥曲线的关系,解题的关键是将问题转化为方程根的问题,运用判别式解决,注意只有一个公共点时,不要忽视了与渐近线平行的情况,属于易错题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.设[x]表示不超过x的最大整数,若[π]=3,[-1.2]=-2.给出下列命题:
①对任意的实数x,都有x-1<[x]≤x.
②对任意的实数x、y,都有[x+y]≥[x]+[y].
③[lg1]+[lg2]+[lg3]+…+[lg2014]+[lg2015]=4940.
④若函数f(x)=[x[x]],当x∈[0,n)(n∈N*)时,令f(x)的值域为A,记集合A中元素个数为an,则$\frac{{a}_{n}+49}{n}$的最小值为$\frac{19}{2}$,其中所有真命题的序号为①②④.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.当动点P在圆x2+y2=2上运动时,它与定点A(3,1)连线的中点Q的轨迹方程是(2x-3)2+(2y-1)2=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列算法框中表示处理框的是(  )
A.菱形框B.平行四边形框C.矩形框D.三角形框

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=ax-lnx;g(x)=x3-x2-8x-1
(1)求函数f(x)的单调区间;
(2)若对任意${x_1}∈[1{,^{\;}}e]$,存在${x_2}∈[0{,^{\;}}3]$使得f(x1)≤g(x2)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知M是椭圆$\frac{{x}^{2}}{4}$+y2=1上任意一点,N为点M在直线x=3上的射影,$\overrightarrow{OP}$=$\overrightarrow{OM}$+$\overrightarrow{ON}$,其中O为坐标原点.
(I)求动点P的轨迹E的方程;
(II)过点A(1,4)的直线l与(I)中曲线E相切,求切线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在△ABC中,∠B=30°,AC=2$\sqrt{5}$,D是边AB上一点.
(1)求△ABC的面积的最大值;
(2)若CD=2,△ACD的面积为4,∠ACD为锐角,求BC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.E,F是等腰直角△ABC斜边AB上的三等分点,则tan∠ECF=$\frac{3}{4}$,cos∠BCF=$\frac{{2\sqrt{5}}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.圆(x-3)2+(y-3)2=9上到直线3x+4y-11=0的距离等于2的点有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

同步练习册答案