精英家教网 > 高中数学 > 题目详情
10.已知函数f(x)=sinωx+acosωx(其中ω>0)满足f(0)=$\sqrt{3}$,且f(x)图象的相邻两条对称轴间的距离为π.
(1)求a与ω的值;
(2)若f(α)=$\sqrt{2}$,α∈(-$\frac{π}{6}$,$\frac{π}{6}$),求cos(α-$\frac{5π}{12}$)的值.

分析 (1)根据f(0)=$\sqrt{3}$求出a的值,再根据f(x)图象的相邻两条对称轴间的距离为π求出ω的值;
(2)由f(α)的值求出sin(α+$\frac{π}{3}$)的值,再根据α的取值范围求出α的值,从而求出cos(α-$\frac{5π}{12}$)的值.

解答 解:(1)∵函数f(x)=sinωx+acosωx(其中ω>0)满足f(0)=$\sqrt{3}$,
∴sin0+acos0=$\sqrt{3}$,解得a=$\sqrt{3}$,
∴f(x)=sinωx+$\sqrt{3}$cosωx=2sin(ωx+$\frac{π}{3}$),
又∵f(x)图象的相邻两条对称轴间的距离为π,
∴T=2π=$\frac{2π}{ω}$,解得ω=1;
(2)∵f(α)=$\sqrt{2}$,∴sin(α+$\frac{π}{3}$)=$\frac{\sqrt{2}}{2}$,
又∵α∈(-$\frac{π}{6}$,$\frac{π}{6}$),∴α+$\frac{π}{3}$∈($\frac{π}{6}$,$\frac{π}{2}$),
∴α+$\frac{π}{3}$=$\frac{π}{4}$,解得α=-$\frac{π}{12}$;
∴cos(α-$\frac{5π}{12}$)=cos(-$\frac{π}{12}$-$\frac{5π}{12}$)=cos$\frac{π}{2}$=0.

点评 本题主要考查了由y=Asin(ωx+φ)的部分图象确定其解析式,也考查了三角函数恒等变换的应用问题,是综合性题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.对于数列{an}满足:a1=1,an+1-an∈{a1,a2,…an}(n∈N+),记满足条件的所有数列{an}中,a10的最大值为a,最小值为b,则a-b=502.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数y=f(x)是定义在R上的偶函数,当x∈(-∞,0]时,f(x)为减函数,若a=f(20.3),$b=f({{{log}_{\frac{1}{2}}}4})$,c=f(log25),则a,b,c的大小关系是(  )
A.a>b>cB.c>b>aC.c>a>bD.a>c>b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.当a>1时,不等式${log_a}(4-x)>-{log_{\frac{1}{a}}}x$的解集是(  )
A.(0,2)B.(0,4)C.(2,4)D.(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若函数f(x)=(m-1)xα是幂函数,则函数g(x)=loga(x-m)(其中a>0,a≠1)的图象过定点A的坐标为(3,0).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知关于的不等式0≤x2+$\frac{7}{9}$x-$\frac{{2}^{t}}{({2}^{t}+1)^{2}}$<$\frac{2}{9}$对任意t≥1恒成立,则所有x的取值集合是{-1,$\frac{2}{9}$}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.命题“?x>0,x2>0”的否定是(  )
A.?x>0,x2<0B.?x>0,x2≤0C.$?{x_0}>0,{x_0}^2<0$D.$?{x_0}>0,{x_0}^2≤0$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.求数列5,55,555,…的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数y=$\frac{2x-1}{\sqrt{3x+5}}$的定义域为(  )
A.{x|x≥-$\frac{5}{3}$}B.{x|x≥-$\frac{5}{3}$且x≠$\frac{1}{2}$}C.{x|x>-$\frac{5}{3}$}D.{x|x≤-$\frac{5}{3}$}

查看答案和解析>>

同步练习册答案