| A. | 1 | B. | $\frac{1}{2}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{4}$ |
分析 由已知利用同角三角函数基本关系式可求sinA,利用两角和的正弦函数公式可求sinC的值,由正弦定理可求AB,设BC边上的高为h,利用三角形面积公式,即可计算得解.
解答 解:∵cosA=-$\frac{\sqrt{10}}{10}$,B=$\frac{π}{4}$,
∴sinA=$\sqrt{1-co{s}^{2}A}$=$\frac{3\sqrt{10}}{10}$,可得:sinC=sin(A+B)=$\frac{\sqrt{5}}{5}$,
由$\frac{AB}{sinC}=\frac{BC}{sinA}$,BC=1,可得:AB=$\frac{\sqrt{2}}{3}$,
∴S△ABC=$\frac{1}{2}$AB•BC•sinB=$\frac{1}{6}$,
设BC边上的高为h,S△ABC=$\frac{1}{2}$BC•h=$\frac{1}{6}$,
∴h=$\frac{1}{3}$,
故选:C.
点评 本题主要考查了同角三角函数基本关系式,两角和的正弦函数公式,正弦定理,三角形面积公式在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 8 | C. | 12 | D. | 20 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com