精英家教网 > 高中数学 > 题目详情
18.在△ABC中,BC=1且cosA=-$\frac{\sqrt{10}}{10}$,B=$\frac{π}{4}$,则BC边上的高等于(  )
A.1B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{1}{4}$

分析 由已知利用同角三角函数基本关系式可求sinA,利用两角和的正弦函数公式可求sinC的值,由正弦定理可求AB,设BC边上的高为h,利用三角形面积公式,即可计算得解.

解答 解:∵cosA=-$\frac{\sqrt{10}}{10}$,B=$\frac{π}{4}$,
∴sinA=$\sqrt{1-co{s}^{2}A}$=$\frac{3\sqrt{10}}{10}$,可得:sinC=sin(A+B)=$\frac{\sqrt{5}}{5}$,
由$\frac{AB}{sinC}=\frac{BC}{sinA}$,BC=1,可得:AB=$\frac{\sqrt{2}}{3}$,
∴S△ABC=$\frac{1}{2}$AB•BC•sinB=$\frac{1}{6}$,
设BC边上的高为h,S△ABC=$\frac{1}{2}$BC•h=$\frac{1}{6}$,
∴h=$\frac{1}{3}$,
故选:C.

点评 本题主要考查了同角三角函数基本关系式,两角和的正弦函数公式,正弦定理,三角形面积公式在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.在四棱锥P-ABCD中,PD⊥平面ABCD,底面ABCD是直角梯形,AD⊥DC,AB∥DC,DC=2AB,设Q为棱PC上一点,$\overrightarrow{PQ}$=λ$\overrightarrow{PC}$
(1)求证:当λ=$\frac{1}{2}$时,BQ∥平面PAD;
(2)若PD=1,BC=$\sqrt{2}$,BC⊥BD,试确定λ的值使得二面角Q-BD-P的平面角为45°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知曲线C的极坐标方程为ρ=4cosθ,以极点为原点,极轴为x轴的非负半轴建立平面直角坐标系,直线l的参数方程为$\left\{\begin{array}{l}{x=2t}\\{y=2t-1}\end{array}\right.$(t为参数),则直线l被曲线C截得的弦长为$\sqrt{14}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知双曲线C的方程为$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0),若C的右支上存在两点A、B,使∠AOB=120°,其中O为坐标原点,则曲线C的离心率的取值范围是(2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设f(x)=$\left\{\begin{array}{l}{a^x},x≥0\\{log_a}({{x^2}+{a^2}}),x<0\end{array}$,且f(2)=4,则f(-2)等于(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若ln(x+1)-1≤ax+b对任意x>-1的恒成立,则$\frac{b}{a}$的最小值是1-e.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知向量$\overrightarrow{a}$=(x,2),$\overrightarrow{b}$=(2,1),$\overrightarrow{c}$=(3,x),若$\overrightarrow{a}$∥$\overrightarrow{b}$,则$\overrightarrow{a}$•$\overrightarrow{c}$=(  )
A.4B.8C.12D.20

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.函数f(x)=sin2x-2$\sqrt{3}$sin2x的最大值为2-$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示,
(1)求由$\left\{\begin{array}{l}0≤x≤\frac{5π}{12}\\ 0≤y≤f(x)\end{array}$,确定的区域的面积;
(2)如何由函数y=sinx的图象通过相应的平移与伸缩变换得到函数f(x)的图象,写出变换过程.

查看答案和解析>>

同步练习册答案