【题目】已知直三棱柱
中,
,
.
⑴求异面直线
与
所成角;
⑵求点
到平面
的距离.
![]()
【答案】⑴
⑵![]()
【解析】
法一:⑴ 求出
,从而
,进而
为异面直线
与
所成的角或补角,由此能求出异面直线
与
所成角.
⑵ 设点
到平面
的距离为h,由
,能求出点
到平面
的距离.
法二:
⑴ 设异面直线
与
所成角为
,建立空间直角坐标系,利用向量法能求出异面直线
与
所成角.
⑵ 求出平面
的法向量,利用向量法能求出点
到平面
的距离.
解法一:
⑴在直三棱柱
中,
,
,
,![]()
所以,![]()
因为,
,
所以
为异面直线
与
所成的角或补角
在
中,因为,
,
所以,异面直线
与
所成角为![]()
⑵设点
到平面
的距离为h,
由⑴得
,
,
因为,
,
所以,
,解得,
.
所以,点
到平面
的距离为![]()
解法二:
⑴设异面直线
与
所成角为
,如图建系,
![]()
则
,
,
因为,![]()
所以,异面直线
与
所成角为![]()
⑵设平面
的法向量为
,则
.
又
,
,
所以,由
,得![]()
所以,点
到平面
的距离![]()
科目:高中数学 来源: 题型:
【题目】“珠算之父”程大位是我国明代著名的数学家,他的应用巨著《算法统综》中有一首“竹筒容米”问题:“家有九节竹一茎,为因盛米不均平,下头三节四升五,上梢四节三升八,唯有中间两节竹,要将米数次第盛,若有先生能算法,也教算得到天明.”((注)四升五:4.5升,次第盛:盛米容积依次相差同一数量.)用你所学的数学知识求得中间两节竹的容积为
A. 2.2升B. 2.3升
C. 2.4升D. 2.5升
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知在四棱锥
中,底面
是边长为4的正方形,
是正三角形,平面
平面
,
分别是
的中点.
![]()
(1)求证:平面
平面
;
(2)若
是线段
上一点,求三棱锥
的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,曲线
的参数方程为
(
为参数),曲线
的参数方程为
(
为参数),以坐标原点
为极点,
轴的正半轴为极轴建立极坐标系.
(1)求曲线
和曲线
的极坐标方程;
(2)已知射线
(
),将射线
顺时针方向旋转
得到
:
,且射线
与曲线
交于两点,射线
与曲线
交于
两点,求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某脐橙种植基地记录了10棵脐橙树在未使用新技术的年产量(单位:
)和使用了新技术后的年产量的数据变化,得到表格如下:
未使用新技术的10棵脐橙树的年产量
第一棵 | 第二棵 | 第三棵 | 第四棵 | 第五棵 | 第六棵 | 第七棵 | 第八棵 | 第九棵 | 第十棵 | |
年产量 | 30 | 32 | 30 | 40 | 40 | 35 | 36 | 45 | 42 | 30 |
使用了新技术后的10棵脐橙树的年产量
第一棵 | 第二棵 | 第三棵 | 第四棵 | 第五棵 | 第六棵 | 第七棵 | 第八棵 | 第九棵 | 第十棵 | |
年产量 | 40 | 40 | 35 | 50 | 55 | 45 | 42 | 50 | 51 | 42 |
已知该基地共有20亩地,每亩地有50棵脐橙树.
(1)估计该基地使用了新技术后,平均1棵脐橙树的产量;
(2)估计该基地使用了新技术后,脐橙年总产量比未使用新技术将增产多少?
(3)由于受市场影响,导致使用新技术后脐橙的售价由原来(未使用新技术时)的每千克10元降为每千克9元,试估计该基地使用新技术后脐橙年总收入比原来增加的百分数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com