分析 (1)求出A-1,确定坐标之间的关系,即可求C1的方程;
(2)设P(x,y)为圆C上的任意一点,在矩阵A对应的变换下变为另一个点P'(x',y'),代入椭圆方程,对照圆的方程即可求出a和b的值.
(3)A2=$(\begin{array}{l}{1}&{1}\\{2}&{1}\end{array})$,利用条件建立方程,即可得出结论;
(4)先计算MN,再求点A、B、C在矩阵MN对应的变换下得到点分别为A1、B1、C1的坐标,利用△A1B1C1的面积是△ABC面积的2倍,可求k的值.
解答 解:(1)由题意,A=$(\begin{array}{l}{1}&{2}\\{0}&{1}\end{array})$$(\begin{array}{l}{1}&{2}\\{0}&{1}\end{array})$=$[\begin{array}{l}{1}&{5}\\{0}&{1}\end{array}]$,行列式为1,A-1=$[\begin{array}{l}{1}&{0}\\{-5}&{1}\end{array}]$,
设曲线C1上的点为(x,y),曲线C:x2+2y2=1的点为(a,b),
则$\left\{\begin{array}{l}{a=x}\\{-5a+b=y}\end{array}\right.$,∴a=x,b=5x+y,
∴x2+2(5x+y)2=1;
(2)设P(x,y)为圆C上的任意一点,
在矩阵A对应的变换下变为另一个点P'(x',y'),
则$[\begin{array}{l}{x′}\\{y}\end{array}]$=$[\begin{array}{l}{a}&{0}\\{0}&{b}\end{array}]$$[\begin{array}{l}{x}\\{y}\end{array}]$,即$\left\{\begin{array}{l}{x′=ax}\\{y′=by}\end{array}\right.$
又因为点P'(x',y')在椭圆$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1上,所以$\frac{{a}^{2}{x}^{2}}{9}+\frac{{b}^{2}{y}^{2}}{4}=1$.
由已知条件可知,x2+y2=1,所以 a2=9,b2=4.
因为 a>0,b>0,
所以 a=3,b=2;
(3)A2=$(\begin{array}{l}{1}&{1}\\{2}&{1}\end{array})$$(\begin{array}{l}{1}&{1}\\{2}&{1}\end{array})$=$[\begin{array}{l}{3}&{2}\\{4}&{3}\end{array}]$,
设$\overrightarrow{α}$=$[\begin{array}{l}{x}\\{y}\end{array}]$,则$[\begin{array}{l}{3}&{2}\\{4}&{3}\end{array}]$$[\begin{array}{l}{x}\\{y}\end{array}]$=$[\begin{array}{l}{1}\\{2}\end{array}]$
∴$\left\{\begin{array}{l}{3x+2y=1}\\{4x+3y=2}\end{array}\right.$,解得:x=-1,y=2,
∴$\overrightarrow{α}$=$[\begin{array}{l}{-1}\\{2}\end{array}]$;
(4)由题设得MN=$[\begin{array}{l}{0}&{k}\\{1}&{0}\end{array}]$
由$[\begin{array}{l}{0}&{k}\\{1}&{0}\end{array}]$$[\begin{array}{l}{0}&{-2}&{-2}\\{0}&{0}&{1}\end{array}]$=$[\begin{array}{l}{0}&{0}&{k}\\{0}&{-2}&{-2}\end{array}]$,
可知A1(0,0)、B1(0,-2)、C1(k,-2)
计算得△ABC面积的面积是1,△A1B1C1的面积是k的绝对值,则由题设可知:k的值为2或-2.
点评 本题主要考查了矩阵变换与性质,同时考查了计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | A=R,B={x|x>0},f:x→y=|x| | B. | A=Z,B=N*,f:x→y=x2 | ||
| C. | A=Z,B=Z,f:x→y=$\sqrt{x}$ | D. | A=[-1,1],B={0},f:x→y=0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4个 | B. | 3个 | C. | 2个 | D. | 1个 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com