精英家教网 > 高中数学 > 题目详情
若平面向量
a
b
满足|
a
+
b
|=1,且
a
=2
b
,则|
b
|=(  )
A、
2
3
B、
1
3
C、1
D、
1
2
考点:平面向量数量积的运算
专题:计算题,平面向量及应用
分析:由|
a
+
b
|=1,且
a
=2
b
,直接代入即有|2
b
+
b
|=1,再由向量的模的性质,即可得到所求的模.
解答: 解:由|
a
+
b
|=1,且
a
=2
b

即有|2
b
+
b
|=1,
即3|
b
|=1,
即有|
b
|=
1
3

故选B.
点评:本题考查向量共线和向量的模的求法,考查运算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图1所示,直角梯形ABCD,∠ADC=90°,AB∥CD,AD=CD=
1
2
AB=2,点E为AC的中点,将△ACD沿AC折起,使折起后的平面ACD与平面ABC垂直(如图2),在图2所示的几何体D-ABC中.
(1)求证:BC⊥平面ACD;
(2)点F在棱CD上,且满足AD∥平面BEF,求几何体F-BCE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

有标号为1、2、3、4、5、的五个红球和标号为1、2的两个白球,将这七个球排出一排,使两端都是红球.
(1)如果每个白球的两边都是红球,有多少种排法?
(2)如果1号红球和1号白球相邻排在一起,有多少种排法?
(3)同时满足上述两个条件的排法是多少种?

查看答案和解析>>

科目:高中数学 来源: 题型:

如图是某几何体的三视图,则该几何体的体积等于(  )
A、
2
3
B、
4
3
C、1
D、
1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-2ax+2,当x0∈[1,+∞)时,恒有f(x0)>0,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

某公司招聘职员,对甲、乙两位候选人进行了面试和笔试,成绩(百分制)如表:
候选人面试笔试
形体口才专业水平创新能力
86909692
92889593
如果公司要求形体、口才、专业水平、创新能力按照5%、30%、35%、30%计算总分,那么将录取
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某几何体三视图如图所示,其中三角形的三边长与圆的直径均为2,则该几何体体积为(  )
A、
32+8
3
3
π
B、
32+
3
3
π
C、
4+3
3
3
π
D、
4+
3
3
π

查看答案和解析>>

科目:高中数学 来源: 题型:

设定义域为(0,+∞)的单调函数f(x),对任意的x∈(0,+∞),都有f[f(x)-lnx]=e+1,若x0是方程f(x)-f′(x)=e的一个解,则x0可能存在的区间是(  )
A、(0,1)
B、(e-1,1)
C、(0,e-1
D、(1,e)

查看答案和解析>>

科目:高中数学 来源: 题型:

求证:
sin(-α)-1
cos(-α)+1
1+sec(-α)
1-cos(-α)
=tan(-α)

查看答案和解析>>

同步练习册答案