【题目】已知函数(,).
(1)当时,若函数在上有两个零点,求的取值范围;
(2)当时,是否存在,使得不等式恒成立?若存在,求出的取值集合;若不存在,请说明理由.
【答案】(1).(2)存在,的取值集合为.
【解析】
(1)将代入,求得函数的导数,当时显然不成立,当时,利用零点的存在定理,即可求解的结论;
(2)当时,设,由,进而条件转化为不等式对恒成立,得到是函数的最大值,也是函数的极大值,故,当时,利用导数得到不等式恒成立,即可求解.
(1)当时,,(),
当时,,在上单调递增,不合题意,舍去;
当时,,,
进而在上单调递增,在上单调递减,
依题意有,,,解得,
又,且,在上单调递增,
进而由零点存在定理可知,函数在上存在唯一零点;
下面先证()恒成立,令,则,
当时,,函数单调递减,
当时,,函数单调递增,
进而,∴,∴,
可得,
若,得,
因为,则,即当时,取,有,
即存在使得,
进而由零点存在定理可知在上存在唯一零点;
(2)当时,存在,使得不等式恒成立.
证明如下:
当时,设,则,
依题意,函数恒成立,
又由,进而条件转化为不等式对恒成立,
所以是函数的最大值,也是函数的极大值,故,解得.
当时,(),
令可得,令可得.
故在上递增,在上递减.
因此,即不等式恒成立.
综上,存在且的取值集合为.
科目:高中数学 来源: 题型:
【题目】元朝著名的数学家朱世杰在《四元玉鉴》中有一首诗:“我有一壶酒,携着游春走.遇店添一倍,逢友饮一斗.”基于此情景,设计了如图所示的程序框图,若输入的,输出的,则判断框中可以填( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左顶点为,左、右焦点分别为,离心率为,是椭圆上的一个动点(不与左、右顶点重合),且的周长为6,点关于原点的对称点为,直线交于点.
(1)求椭圆方程;
(2)若直线与椭圆交于另一点,且,求点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|x+1|﹣|2x﹣2|的最大值为M,正实数a,b满足a+b=M.
(1)求2a2+b2的最小值;
(2)求证:aabb≥ab.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知三棱锥中,与均为等腰直角三角形,且,,为上一点,且平面.
(1)求证:;
(2)过作一平面分别交, , 于,,,若四边形为平行四边形,求多面体的表面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如果存在常数k使得无穷数列满足恒成立,则称为数列.
(1)若数列是数列,,,求;
(2)若等差数列是数列,求数列的通项公式;
(3)是否存在数列,使得,,,…是等比数列?若存在,请求出所有满足条件的数列;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某高中某班共有40个学生,将学生的身高分成4组:平频率/组距,,,进行统计,作成如图所示的频率分布直方图.
(1)求频率分布直方图中的值和身高在内的人数;
(2)求这40个学生平均身高的估计值(同一组中的数据用该组区间的中点值为代表)(精确到0.01).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)若函数在处的切线方程,求实数a,b的值;
(2)若函数在和两处得极值,求实数a的取值范围;
(3)在(2)的条件下,若.求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)sin(ωx+φ)﹣cos(ωx+φ)(0<φ<π,ω>0)为偶函数,且y=f(x)图象的两相邻对称轴间的距离为,则f()的值为( )
A.﹣1B.1C..D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com