分析 (Ⅰ)设等差数列的公差为d,运用通项公式,求得公差d,即可得到所求通项公式;
(Ⅱ)运用等差数列的求和公式化简bn=$\frac{1}{n}$-$\frac{1}{n+1}$,再由裂项相消求和,即可得到所求.
解答 解:(Ⅰ)设等差数列的公差为d,
由a2=0,a4=4.即有a4-a2=2d=4,
解得d=2,
可得an=a2+(n-2)d=2n-4;
(Ⅱ)bn=$\frac{1}{{S}_{n}+4n}$=$\frac{1}{\frac{1}{2}n(2n-6)+4n}$
=$\frac{1}{{n}^{2}+n}$=$\frac{1}{n}$-$\frac{1}{n+1}$,
则前n项和Tn=b1+b2+…+bn
=1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+…+$\frac{1}{n}$-$\frac{1}{n+1}$
=1-$\frac{1}{n+1}$=$\frac{n}{n+1}$.
点评 本题考查等差数列的通项公式和求和公式的运用,考查数列的求和方法:裂项相消求和,考查运算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{4}$ | B. | $\frac{π}{2}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com