精英家教网 > 高中数学 > 题目详情
5.已知函数f(x)=$\left\{\begin{array}{l}{-{x}^{2}+2x,x≤0}\\{lnx,x>0}\end{array}\right.$,则f(f($\frac{1}{e}$))=(  )
A.3B.1C.-1D.-3

分析 利用分段函数的解析式,由里及外逐步求出函数值即可.

解答 解:函数f(x)=$\left\{\begin{array}{l}{-{x}^{2}+2x,x≤0}\\{lnx,x>0}\end{array}\right.$,则f(f($\frac{1}{e}$))=f(ln$\frac{1}{e}$)=f(-1)=-1-2=-3.
故选:D.

点评 本题考查分段函数的应用,函数值的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.已知实数x,y满足$\left\{\begin{array}{l}x-y+2≤0\\ x+y-4≤0\\ x+2y-4≥0\end{array}\right.$,则y-2x的最小值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在△ABC中,角A,B,C所对的边分别为a,b,c,已知3acosA=ccosB+bcosC.
(1)求cosA,sinA的值;
(2)若cosB+cosC=$\frac{2\sqrt{3}}{3}$,求cosC+$\sqrt{2}$sinC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知复数z=$\frac{t+i}{3+4i}$∈R,(i为虚数单位,t为实数).则1+ti的共轭复数为(  )
A.1-$\frac{3}{4}$iB.1+$\frac{3}{4}$iC.1-$\frac{4}{3}$iD.1+$\frac{4}{3}$i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知集合A={2,3},B={x|(x-2)(x+2)=0},则A∪B=(  )
A.B.{2}C.{2,3}D.{-2,2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.直线y=x-1与直线y=2的夹角为$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知(1+xi)(1-2i)=y(其中x,y∈R),则(  )
A.x=-2,y=-3B.x=2,y=-3C.x=-2,y=7D.x=2,y=5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=a-bsin(2x-$\frac{π}{4}$)(b<0)的最大值为$\frac{4}{3}$,最小值为$\frac{2}{3}$.
(Ⅰ)求a、b的值;
(Ⅱ)若f(x)在区间[-$\frac{π}{8}$,m]上为增函数,求实数m的取值范围;
(Ⅲ)若f($\frac{ω}{2}$x)(ω>0)的最小正周期不大于3π,求实数ω的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在△ABC中,角A、B、C所对的边分别为a、b、c.若B=$\frac{π}{3}$,S△ABC=$\sqrt{3}$,则b的最小值为2.

查看答案和解析>>

同步练习册答案