分析 本题可依次解出空心圆个数n=1,2,3,…,圆的总个数.再根据规律,可得出前2014个圆中,实心圆的个数.
解答 解:∵n=1时,圆的总个数是2;
n=2时,圆的总个数是5,即5=2+3;
n=3时,圆的总个数是9,即9=2+3+4;
n=4时,圆的总个数是14,即14=2+3+4+5;
…;
∴n=n时,圆的总个数是2+3+4+…+(n+1).
∵2+3+4+…+63=2015>2014,
2+3+4+…+62=1952<2014,
∴在前2014个圆中,共有61个实心圆.
故答案为:61.
点评 本题是一道找规律的题目,对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3π}{4}$ | B. | $-\frac{π}{4}$ | C. | $\frac{π}{4}$ | D. | $\frac{2π}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com