精英家教网 > 高中数学 > 题目详情
已知复数z=(a2-7a+6)+(a2-5a-6)i(a∈R),试求满足下列条件时实数a的取值集合.
(1)复数z为纯虚数;
(2)复数z在复平面内的对应点在第四象限.
考点:复数的代数表示法及其几何意义
专题:计算题,数系的扩充和复数
分析:(1)由纯虚数的定义可得方程,解出可得;
(2)由复数的几何意义可得不等式组,解出可得;
解答: 解:(1)由题设知:
a2-7a+6=0
a2-5a-6≠0

解之得,a=1,
∴实数a的取值集合为{1};
(2)由题设知:
a2-7a+6>0
a2-5a-6<0

解之得,
a<1或a>6
-1<a<6

∴实数a的取值集合为{a|-1<a<1}.
点评:该题考查复数的基本概念及其几何意义,属基础题,熟记相关概念是解题关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

用数学归纳法证明不等式(1+2+3+…+n)(1+
1
2
+
1
3
+…+
1
n
)≥n2+n-1成立,初始值n0至少应取(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
x+3,x≤1
-x2+2x+3,x>1
,则函数g(x)=f(x)-ex的零点个数为(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x>0,y>0,且(x-1)(y-1)≥2,则x+y的取值范围是(  )
A、[3,+∞)
B、[2,+∞)
C、[2
2
+2,+∞)
D、[
2
+2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f(x),若存在实数对(a,b),使得等式f(a+x)•f(a-x)=b对定义域中的每一个x都成立,则称函数f(x)是“(a,b)型函数”.
(1)判断函数f(x)=3x是否为“(a,b)型函数”,并说明理由;
(2)已知函数g(x)是“(1,4)型函数”,且当x∈[0,1]时,g(x)=x2-4x+4,当x∈[1,2],求函数h(x)=(x+2)g(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,母线长为2的圆锥PO中,已知AB是半径为1的⊙O的直径,点C在AB弧上,D为AC的中点.
(1)求圆锥PO的表面积;
(2)证明:平面ACP⊥平面POD.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(
1
2
1
2
sinx+
3
2
cosx)与
b
=(1,y)共线,设函数y=f(x)
(1)求函数f(x)的最小正周期及值域;
(2)已知锐角△ABC的三个内角分别为A,B,C若有f(A-
π
3
)=
3
,AC=1,AB=2,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)化简
1+sinx
cosx
sin2x
2cos2(
π
4
-
x
2
)

(2)一个扇形的面积为1,周长为4,则中心角的弧度数为?

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a=1,b=
ex-e-x
2
,c=
ex+e-x
2
(x>0,e=2.71828…)).
(1)求△ABC的最大角;
(2)试比较am+bm与cm(m∈R)的大小.

查看答案和解析>>

同步练习册答案