精英家教网 > 高中数学 > 题目详情
已知x>0,y>0,且(x-1)(y-1)≥2,则x+y的取值范围是(  )
A、[3,+∞)
B、[2,+∞)
C、[2
2
+2,+∞)
D、[
2
+2,+∞)
考点:基本不等式
专题:不等式的解法及应用
分析:由题意结合基本不等式可得关于x+y的不等式,解不等式可得.
解答: 解:∵x>0,y>0,且(x-1)(y-1)≥2,
∴xy-x-y+1≥2,即x+y+1≤xy,
由基本不等式可得x+y+1≤xy≤(
x+y
2
)2

整理可得(x+y)2-4(x+y)-4≥0,
解得x+y≥2+2
2
,或x+y≤2-2
2

∵x>0,y>0,∴舍去x+y≤2-2
2

∴x+y的取值范围为:[2+2
2
,+∞)
故选:C
点评:本题考查基本不等式和一元二次不等式的解法,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某单位有若干部门,现召开一个70人的座谈会,决定用分层抽样的方法从各部门选取代表,其中一个部门20人中被抽取4人,则这个单位应有(  )
A、200人B、250人
C、300人D、350人

查看答案和解析>>

科目:高中数学 来源: 题型:

用反证法证明:“若a,b,c都是正数,则三个数a+
1
b
,b+
1
c
,c+
1
a
中至少有一个不小于2”时,“假设”应为(  )
A、假设a+
1
b
,b+
1
c
,c+
1
a
至少有一个大于2
B、假设a+
1
b
,b+
1
c
,c+
1
a
都不大于2
C、假设a+
1
b
,b+
1
c
,c+
1
a
至多有两个不小于2
D、假设a+
1
b
,b+
1
c
,c+
1
a
都小于2

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=x2-2x-4lnx,则f(x)的增区间为(  )
A、(0,+∞)
B、(2,+∞)
C、(-∞,-1)
D、(∞,-1)和(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,一个底面半径为R的圆柱被与其底面所成角为θ(00<θ<900)的平面所截,截面是一个椭圆.当θ为30°时,这个椭圆的离心率为(  )
A、
1
2
B、
3
2
C、
3
3
D、
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知p:|1-2x|≤5,q:x2-4x+4-9m2≤0(m>0).若p是q的充分不必要条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知复数z=(a2-7a+6)+(a2-5a-6)i(a∈R),试求满足下列条件时实数a的取值集合.
(1)复数z为纯虚数;
(2)复数z在复平面内的对应点在第四象限.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2sin(2x+
π
3

(1)若函数y=f(x)的图象关于直线x=a(a>0)对称,求a的最小值;
(2)求f(x)的单调递减区间;
(3)若存在x0∈[-
π
12
π
6
],使得mf(x0)-2=0成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-x,g(x)=lnx-2x.
(Ⅰ)若函数h(x)=f(x)+g(x)时,求函数h(x)的单调增区间;
(Ⅱ)若函数F(x)=f(x)+ag(x),求函数F(x)在区间[1,e]上的最小值.

查看答案和解析>>

同步练习册答案