精英家教网 > 高中数学 > 题目详情
1.若将函数f(x)=sin2x+cos2x的图象向左平移φ(φ>0)个单位,所得的图象关于y轴对称,则φ的最小值是(  )
A.$\frac{π}{4}$B.$\frac{3π}{8}$C.$\frac{π}{8}$D.$\frac{5π}{8}$

分析 将f(x)化简只有一个函数名,通过变换后图象关于y轴对称建立关系,可得φ的最小值.

解答 解:函数f(x)=sin2x+cos2x=$\sqrt{2}sin(2x+\frac{π}{4})$图象向左平移φ可得:$\sqrt{2}$sin(2x+2φ$+\frac{π}{4}$)图象关于y轴对称,
即2φ$+\frac{π}{4}$=$\frac{π}{2}+kπ$(k∈Z)
解得:φ=$\frac{1}{2}kπ+\frac{π}{8}$.
∵φ>0,
当k=0时,φ的值最小值为$\frac{π}{8}$.
故选C.

点评 本题主要考查了函数y=Asin(ωx+φ)的图象变换规律,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.在△ABC中,$B=\frac{π}{6}$,BC边上的高等于$\frac{{\sqrt{3}}}{9}BC$,则cosA=(  )
A.$\frac{{5\sqrt{13}}}{26}$B.$-\frac{{5\sqrt{13}}}{26}$C.$-\frac{{3\sqrt{39}}}{26}$D.$\frac{{3\sqrt{39}}}{26}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在△ABC中,角A,B,C对应边分别为a,b,c,已知三个向量$\overrightarrow m=(a,cos\frac{A}{2})$,$\overrightarrow n=(b,cos\frac{B}{2})$,$\overrightarrow p=(c,cos\frac{C}{2})$共线,则△ABC形状为(  )
A.等边三角形B.等腰三角形C.直角三角形D.等腰直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数$f(x)=lnx-x+\frac{1}{x}$,若$a=f({\frac{1}{3}})$,b=f(π),c=f(5),则(  )
A.c<b<aB.c<a<bC.b<c<aD.a<c<b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知集合A={x|x2-9>0},B={x|2<x≤5},则A∩B=(  )
A.(3,5]B.(-∞,-3)∪(5,+∞)C.(-∞,-3)∪[5,+∞)D.(-∞,2]∪(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设$θ∈(0,\frac{π}{2})$,向量$\overrightarrow a=(cosθ,2)$,$\overrightarrow b=(-1,sinθ)$,若$\overrightarrow a⊥\overrightarrow b$,则tanθ=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.中国传统文化中很多内容体现了数学的对称美,如图所示的太极图是由黑白两个鱼形纹组成的圆形图案,充分展现了相互转化、对称统一的形式美、和谐美,给出定义:能够将圆O的周长和面积同时平分的函数称为这个圆的“优美函数”,给出下列命题:
①对于任意一个圆O,其“优美函数“有无数个”;
②函数$f(x)=ln({{x^2}+\sqrt{{x^2}+1}})$可以是某个圆的“优美函数”;
③正弦函数y=sinx可以同时是无数个圆的“优美函数”;
④函数y=f(x)是“优美函数”的充要条件为函数y=f(x)的图象是中心对称图形.
其中正确的命题是(  )
A.①③B.①③④C.②③D.①④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=$\left\{\begin{array}{l}{lo{g}_{a}(2-x),x≤1}\\{2|x-5|-2,3≤x≤7}\end{array}\right.$(a>0,a≠1)的图象上关于直线x=1对称的点有且仅有一对,则实数a的取值范围是(  )
A.[$\frac{\sqrt{7}}{7}$,$\frac{\sqrt{5}}{5}$]∪{$\sqrt{3}$}B.[$\sqrt{3}$,$\sqrt{5}$)∪{$\frac{\sqrt{7}}{7}$}C.[$\frac{\sqrt{7}}{7}$,$\frac{\sqrt{5}}{5}$]∪{$\sqrt{5}$}D.[$\sqrt{3}$,$\sqrt{7}$)∪{$\frac{\sqrt{5}}{5}$}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在正方体ABCD-A1B1C1D1中,M是线段A1C1的中点,若四面体M-ABD的外接球的表面积为36π,则正方体棱长为(  )
A.2B.3C.4D.5

查看答案和解析>>

同步练习册答案