精英家教网 > 高中数学 > 题目详情
6.设$θ∈(0,\frac{π}{2})$,向量$\overrightarrow a=(cosθ,2)$,$\overrightarrow b=(-1,sinθ)$,若$\overrightarrow a⊥\overrightarrow b$,则tanθ=$\frac{1}{2}$.

分析 根据两向量垂直时数量积为0,列方程求出tanθ的值.

解答 解:设$θ∈(0,\frac{π}{2})$,向量$\overrightarrow a=(cosθ,2)$,$\overrightarrow b=(-1,sinθ)$,
若$\overrightarrow a⊥\overrightarrow b$,则$\overrightarrow{a}$•$\overrightarrow{b}$=0
-cosθ+2sinθ=0
∴$\frac{sinθ}{cosθ}$=tanθ=$\frac{1}{2}$.
故答案为:$\frac{1}{2}$.

点评 本题考查了平面向量数量积的应用问题,也考查了同角的三角函数关系应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知集合A={x|x2-2x-3≤0},B={x|x>0},则A∩B=(  )
A.(0,3]B.(0,3)C.[0,3]D.[3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知△ABC的内角A,B,C的对边分别为a,b,c,且满足a=1,$\frac{sin(2A+B)}{sinA}=2(1-cosC)$.
(1)求b的值;
(2)若△ABC的面积为$\frac{{\sqrt{3}}}{2}$,求c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知椭圆E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的离心率e=$\frac{{\sqrt{2}}}{2}$,左顶点为A(-2,0).
(1)求椭圆E的方程;
(2)已知O为坐标原点,B,C是椭圆E上的两点,连接AB的直线平行OC交y轴于点D,证明:|AB|$,\;\;\sqrt{2}|{OC}|\;\;,\;\;|{AD}$|成等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若将函数f(x)=sin2x+cos2x的图象向左平移φ(φ>0)个单位,所得的图象关于y轴对称,则φ的最小值是(  )
A.$\frac{π}{4}$B.$\frac{3π}{8}$C.$\frac{π}{8}$D.$\frac{5π}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数$f(x)=xlnx-\frac{a}{2}{x^2}$,直线l:y=(k-2)x-k+1,且k∈Z.
(1)若$?{x_0}∈[{e,{e^2}}]$,使得f(x0)>0成立,求实数a的取值范围;
(2)设a=0,当x>1时,函数f(x)的图象恒在直线l的上方,求k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.某几何体的三视图如图所示,它的表面积为(  )
A.66πB.51πC.48πD.33π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知m,n是两条不同的直线,α,β是两个不重合的平面.命题p:若α∩β=m,m⊥n,则n⊥α;命题q:若m∥α,m?β,α∩β=n,则m∥n.那么下列命题中的真命题是(  )
A.p∧qB.p∨¬qC.¬p∧qD.¬p∧¬q

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在△AOC中,∠O=90°,∠C=30°,B是边OA上一点,D是边OC上一动点,且当CD=100($\sqrt{3}$-1)时,∠ADO=45°
(1)求OA的长;
(2)当AB=52,tan∠ADB=$\frac{13\sqrt{3}}{60}$时,求CD的长.

查看答案和解析>>

同步练习册答案