精英家教网 > 高中数学 > 题目详情
16.已知集合A={x|x2-2x-3≤0},B={x|x>0},则A∩B=(  )
A.(0,3]B.(0,3)C.[0,3]D.[3,+∞)

分析 求出集合A的范围,根据集合的交集的定义求出A、B的交集即可.

解答 解:A={x|x2-2x-3≤0}=[-1,3],B={x|x>0},
则A∩B=(0,3],
故选:A.

点评 本题考查了集合的交集的定义以及运算,考查不等式问题,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知集合A={x|x2-3x+2≤0},B={x|1<2x<4},则A∩B=(  )
A.{x|1≤x≤2}B.{x|1<x≤2}C.{x|1≤x<2}D.{x|0≤x<2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知${({\frac{1}{a}+ax})^4}+{({\frac{1}{b}+bx})^4}$的展开式中x与x3的项的系数之比为1:4,则a4+b4的最小值为(  )
A.16B.12C.8D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设△ABC内角A,B,C所对的边分别为a,b,c,且$a=bcosC+\sqrt{3}csinB$.
(Ⅰ)求B的大小;
(Ⅱ)若$a=\sqrt{3}$,c=2,AC边的中点为D,求BD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在△ABC中,$B=\frac{π}{6}$,BC边上的高等于$\frac{{\sqrt{3}}}{9}BC$,则cosA=(  )
A.$\frac{{5\sqrt{13}}}{26}$B.$-\frac{{5\sqrt{13}}}{26}$C.$-\frac{{3\sqrt{39}}}{26}$D.$\frac{{3\sqrt{39}}}{26}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设数列{an}的前n项和为Sn,且Sn=1-an
(1)证明:{an}是等比数列,并求其通项公式;
(2)若bn=log2an,令${c_n}=\frac{1}{{{b_{2n-1}}{b_{2n+1}}}}$,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若点(x,y)位于曲线y=|2x-1|与y=3所围成的封闭区域内(包含边界),则2x-y的最小值为-5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知抛物线C:y2=2px(p>0)的焦点为F,$A({0\;\;,\;\;\sqrt{3}})$,抛物线C上的点B满足AB⊥AF,且|BF|=4,则p=2或6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设$θ∈(0,\frac{π}{2})$,向量$\overrightarrow a=(cosθ,2)$,$\overrightarrow b=(-1,sinθ)$,若$\overrightarrow a⊥\overrightarrow b$,则tanθ=$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案