分析 (1)由已知利用三角函数恒等变换的应用,三角形内角和定理可得sinB=2sinA,由正弦定理得b=2a,结合a=1,可求b的值.
(2)利用三角形面积公式可求sinC的值,进而利用同角三角函数基本关系式可求cosC,分类讨论,利用余弦定理可求c的值.
解答 解:(1)∵由已知可得:sin(2A+B)=2sinA(1-cosC),
∴sin[(A+B)+A]=2sinA-2sinAcosC,可得:sin(A+B)cosA+cos(A+B)sinA=2sinA+2sinAcos(A+B),sin(A+B)cosA-cos(A+B)sinA=2sinA,
∴sinB=2sinA,
由正弦定理得b=2a,
又a=1,
∴b=2.
(2)∵${S_{△ABC}}=\frac{1}{2}absinC=\frac{1}{2}×1×2sinC=\frac{{\sqrt{3}}}{2}$,
∴$sinC=\frac{{\sqrt{3}}}{2}$,$cosC=±\frac{1}{2}$,
当$cosC=\frac{1}{2}$时,$cosC=\frac{{{a^2}+{b^2}-{c^2}}}{2ab}=\frac{{1+4-{c^2}}}{4}=\frac{1}{2}$,∴$c=\sqrt{3}$;
当$cosC=-\frac{1}{2}$时,$cosC=\frac{{{a^2}+{b^2}-{c^2}}}{2ab}=\frac{{1+4-{c^2}}}{4}=-\frac{1}{2}$,∴$c=\sqrt{7}$.
故$c=\sqrt{3}$或$c=\sqrt{7}$.
点评 本题主要考查了三角函数恒等变换的应用,三角形内角和定理,正弦定理,三角形面积公式,同角三角函数基本关系式,余弦定理在解三角形中的应用,考查了转化思想,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | 16 | B. | 12 | C. | 8 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 等边三角形 | B. | 等腰三角形 | C. | 直角三角形 | D. | 等腰直角三角形 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | c<b<a | B. | c<a<b | C. | b<c<a | D. | a<c<b |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com