精英家教网 > 高中数学 > 题目详情
16.已知集合A={x|x2-9>0},B={x|2<x≤5},则A∩B=(  )
A.(3,5]B.(-∞,-3)∪(5,+∞)C.(-∞,-3)∪[5,+∞)D.(-∞,2]∪(3,+∞)

分析 化简集合A、根据交集的定义写出A∩B.

解答 解:集合A={x|x2-9>0}={x|x<-3或x>3},
B={x|2<x≤5},
则A∩B={x|3<x≤5}=(3,5].
故选:A.

点评 本题考查了集合的化简与运算问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知函数$f(x)=alnx+\frac{1}{x}$,g(x)=bx,a,b∈R.
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)对于任意a∈[0,1],任意x∈[2,e],总有f(x)≤g(x),求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某市春节期间7家超市的广告费支出xi(万元)和销售额yi(万元)数据如下:
超市ABCDEFG
广告费支出xi1246111319
销售额yi19324044525354
(1)若用线性回归模型拟合y与x的关系,求y关于x的线性回归方程;
(2)用对数回归模型拟合y与x的关系,可得回归方程:$\widehaty=12lnx+22$,
经计算得出线性回归模型和对数模型的R2分别约为0.75和0.97,请用R2说明选择哪个回归模型更合适,并用此模型预测A超市广告费支出为8万元时的销售额.
参数数据及公式:$\overline x=8\;\;,\;\;\overline y=42$,$\sum_{i=1}^7{{x_i}{y_i}}=2794\;\;,\;\;\sum_{i=1}^7{{x_i}^2}=708$,$\widehatb=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n•\overline x\overline y}}}{{\sum_{i=1}^n{{x_i}^2-n{{\overline x}^2}}}}\;\;,\;\;\widehata=\overline y-\widehatb\overline x$,ln2≈0.7.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若函数$f(x)=\left\{\begin{array}{l}{e^{x-1}}\;\;,\;\;x≤1\\ 5-{x^2}\;\;,\;\;x>1\end{array}\right.$,则f(f(2))=(  )
A.1B.4C.0D.5-e2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设数列{an}的前n项和为Sn,且${S_n}=\frac{{{a_1}({{4^n}-1})}}{3}$,若a3=8,则a1=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若将函数f(x)=sin2x+cos2x的图象向左平移φ(φ>0)个单位,所得的图象关于y轴对称,则φ的最小值是(  )
A.$\frac{π}{4}$B.$\frac{3π}{8}$C.$\frac{π}{8}$D.$\frac{5π}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设函数y=f(x)的定义域为D,若对于任意x1,x2∈D,当x1+x2=2a时,恒有f(x1)+f(x2)=2b,则称点(a,b)为函数y=f(x)图象的对称中心,研究函数f(x)=x3+sinx+2的图象的某一个对称点,并利用对称中心的上述定义,可得到$f(-1)+f(-\frac{9}{10})+…+f(0)+…+f(\frac{9}{10})+f(1)$=42.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设全集U=R,A={x|x2-x-6<0},B={x|y=lg(x+1)},则图中阴影部分表示的集合为(  )
A.{x|-3<x<-1}B.{x|-3<x<0}C.{x|-1<x<3}D.{x|x>-1}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知锐角△ABC中,内角A,B,C所对应的边分别为a,b,c,且满足:b2-a2=ac,c=2,则a的取值范围是($\frac{2}{3}$,2).

查看答案和解析>>

同步练习册答案