精英家教网 > 高中数学 > 题目详情
1.以坐标系原点O为极点,x轴正半轴为极轴,且两个坐标系取相等长度单位.已知直线l的参数方程为$\left\{{\begin{array}{l}{x=tcosφ}\\{y=2+tsinφ}\end{array}}\right.$(t为参数,0≤φ<π),曲线C的极坐标方程为ρcos2θ=8sinθ.
(1)求直线l的普通方程和曲线C的直角坐标方程;
(2)设直线l与曲线C相交于A,B两点,当φ变化时,求|AB|的最小值.

分析 (1)参数方程消去参数化为普通方程,极坐标方程转化为直角坐标方程即可.
(2)参数方程代入抛物线方程,利用韦达定理以及弦长公式转化求解即可.

解答 解:(1)由$\left\{\begin{array}{l}x=tcosφ\\ y=2+tsinφ\end{array}\right.$消去t得xsinφ-ycosφ+2cosφ=0,
所以直线l的普通方程为xsinφ-ycosφ+2cosφ=0.
由ρcos2φ=8sinθ,得(ρcosθ)2=8ρsinθ,
把x=ρcosφ,y=ρsinφ代入上式,得x2=8y,
所以曲线C的直角坐标方程为x2=8y.
(2)将直线l的参数方程代入x2=8y,得t2cos2φ-8tsinφ-16=0,
设A、B两点对应的参数分别为t1,t2
则${t_1}+{t_2}=\frac{8sinφ}{{{{cos}^2}φ}}$,${t_1}{t_2}=-\frac{16}{{{{cos}^2}φ}}$,
所以$|{AB}|=|{{t_1}-{t_2}}|=\sqrt{{{({{t_1}+{t_2}})}^2}-4{t_1}{t_2}}=\sqrt{\frac{{64{{sin}^2}φ}}{{{{cos}^4}φ}}+\frac{64}{{{{cos}^2}φ}}}=\frac{8}{{{{cos}^2}φ}}$.
当φ=0时,|AB|的最小值为8.

点评 本题考查直线与抛物线的位置关系的应用,参数方程以及极坐标方程的互化,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.设F1,F2是椭圆$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{{b}^{2}}=1$(0<b<2)的左、右焦点,过F1的直线l交椭圆于A,B两点,若|AF2|+|BF2|最大值为5,则椭圆的离心率为(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{5}-1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设$z=\frac{i}{1-i}$(i为虚数单位),则$\frac{1}{|z|}$=(  )
A.$\frac{{\sqrt{2}}}{2}$B.$\sqrt{2}$C.$\frac{1}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在多面体ABCDEF中,底面ABCD是边长为2的菱形,∠BAD=60°,四边形BDEF是矩形,平面BDEF⊥平面ABCD
(1)在图中画出过点B,D的平面α,使得α∥平面AEF(必须说明画法,不需证明);
(2)若二面角α-BD-C是45°,求FB与平面α所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设不等式$\left\{{\begin{array}{l}{-1≤x≤3}\\{y≥-1}\\{x-y+3≥0}\\{x+2y-9≤0}\end{array}}\right.$,表示的平面区域为M,若直线y=k(x+2)上存在M内的点,则实数k的最大值是2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在平面直角坐标系xOy中,曲线C的参数方程为$\left\{\begin{array}{l}x=1+2cosα\\ y=2sinα\end{array}\right.(α$为参数),以坐标原点O为极点,以x轴非负半轴为极轴建立极坐标系,直线l的极坐标方程为$θ=\frac{π}{4}({ρ∈R})$.
(1)求曲线C的极坐标方程及直线l的直角坐标方程;
(2)设直线l与曲线C交于A,B两点,求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=|x-1|+|x+a|-x-2.
(Ⅰ)当a=1时,求不等式f(x)>0的解集;
(Ⅱ)设a>-1,且存在x0∈[-a,1),使得f(x0)≤0,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的离心率为$\frac{2}{3}$,F1,F2分别是它的左、右焦点,且存在直线l,使F1,F2关于l的对称点恰好为圆C:x2+y2-4mx-2my+5m2-4=0(m∈R,m≠0)的一条直径的两个端点.
(1)求椭圆E的方程;
(2)设直线l与抛物线y2=2px(p>0)相交于A,B两点,射线F1A,F1B与椭圆E分别相交于点M,N,试探究:是否存在数集D,当且仅当p∈D时,总存在m,使点F1在以线段MN为直径的圆内?若存在,求出数集D;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.f(x)=sin(ωx+φ)(ω<0)向右平移$\frac{π}{12}$个单位之后图象与g(x)=cos2x的图象重合,则φ=(  )
A.$\frac{5}{12}$πB.$\frac{π}{3}$C.$\frac{5}{12}$π+2kπ(k∈Z)D.$\frac{π}{3}$+2kπ(k∈Z)

查看答案和解析>>

同步练习册答案