精英家教网 > 高中数学 > 题目详情
11.f(x)=sin(ωx+φ)(ω<0)向右平移$\frac{π}{12}$个单位之后图象与g(x)=cos2x的图象重合,则φ=(  )
A.$\frac{5}{12}$πB.$\frac{π}{3}$C.$\frac{5}{12}$π+2kπ(k∈Z)D.$\frac{π}{3}$+2kπ(k∈Z)

分析 由题意,f(x)=sin(ωx+φ)(ω<0)向右平移$\frac{π}{12}$个单位之后,g(x)=sin[ω(x-$\frac{π}{12}$)+φ]=cos2x,ω=-2,$\frac{π}{6}$+φ=2kπ+$\frac{π}{2}$,即可得出结论.

解答 解:由题意,f(x)=sin(ωx+φ)(ω<0)向右平移$\frac{π}{12}$个单位之后,g(x)=sin[ω(x-$\frac{π}{12}$)+φ]=cos2x,
∴ω=-2,$\frac{π}{6}$+φ=2kπ+$\frac{π}{2}$,
∴φ=2kπ+$\frac{π}{3}$(k∈Z),
故选:D.

点评 本题考查三角函数图象变换,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.以坐标系原点O为极点,x轴正半轴为极轴,且两个坐标系取相等长度单位.已知直线l的参数方程为$\left\{{\begin{array}{l}{x=tcosφ}\\{y=2+tsinφ}\end{array}}\right.$(t为参数,0≤φ<π),曲线C的极坐标方程为ρcos2θ=8sinθ.
(1)求直线l的普通方程和曲线C的直角坐标方程;
(2)设直线l与曲线C相交于A,B两点,当φ变化时,求|AB|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=asinx+bx3+1(a,b∈R),f′(x)为f(x)的导函数,则f(2016)+f(-2016)+f′(2017)-f′(-2017)=(  )
A.2017B.2016C.2D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在一项调查中有两个变量x(单位:千元)和y(单位:t),如图是由这两个变量近8年来的取值数据得到的散点图,那么适宜作为y关于x的回归方程类型的是(  )
A.y=a+bxB.y=c+d$\sqrt{x}$C.y=m+nx2D.y=p+qex(q>0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知等差数列{an}中,a1+a3+a9=20,则4a5-a7=(  )
A.20B.30C.40D.50

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知集合A={y|y=$\frac{4{-e}^{x}}{2}$,x∈R},B={x|y=lg(1-2x)}
(1)求出集合A,集合B;
(2)求(∁UB)∩A.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.证明:a2+b2+c2=ab+bc+ca的充要条件是△ABC为等边三角形.这里a,b,c是△ABC的三条边.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知向量$\overrightarrow a$=({cosx,-$\sqrt{3}$cosx),$\overrightarrow b$=(cosx,sinx),函数f(x)=$\overrightarrow a$•$\overrightarrow b$+1.
(Ⅰ)求函数f(x)的单调递增区间;
(Ⅱ)若f(θ)=$\frac{5}{6}$,$θ∈(\frac{π}{3},\frac{2π}{3}),求sin2θ$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=$\frac{{e}^{x+b}}{x}$过点(1,e).
(1)求y=f(x)的单调区间;
(2)当x>0时,求$\frac{f(x)}{x}$的最小值;
(3)试判断方程f(x)-mx=0(m∈R且m为常数)的根的个数.

查看答案和解析>>

同步练习册答案