精英家教网 > 高中数学 > 题目详情
20.已知向量$\overrightarrow a$=({cosx,-$\sqrt{3}$cosx),$\overrightarrow b$=(cosx,sinx),函数f(x)=$\overrightarrow a$•$\overrightarrow b$+1.
(Ⅰ)求函数f(x)的单调递增区间;
(Ⅱ)若f(θ)=$\frac{5}{6}$,$θ∈(\frac{π}{3},\frac{2π}{3}),求sin2θ$的值.

分析 (Ⅰ)根据函数f(x)=$\overrightarrow a$•$\overrightarrow b$+1.求解f(x)的解析式,化解为y=Acos(ωx+φ)的形式,将内层函数看作整体,放到余弦函数的增区间上,解不等式得函数的单调递增区间;
(Ⅱ)根据f(θ)=$\frac{5}{6}$建立关系,利用构造思想,根据和与差的公式计算.

解答 解:(Ⅰ)由题意函数f(x)=$\overrightarrow a$•$\overrightarrow b$+1.
可得:f(x)=cos2x-$\sqrt{3}$sinxcosx+1=$\frac{1}{2}$cos2x-$\frac{\sqrt{3}}{2}$sin2x+$\frac{3}{2}$
=cos(2x+$\frac{π}{3}$)+$\frac{3}{2}$,
令$π+2kπ≤2x+\frac{π}{3}≤2kπ+2π$,可得$kπ+\frac{π}{3}$≤x≤$\frac{5π}{6}+kπ$,k∈Z.
∴函数f(x)的单调递增区间为[$kπ+\frac{π}{3}$,$\frac{5π}{6}+kπ$],k∈Z.
(Ⅱ)由f(θ)=$\frac{5}{6}$,即cos(2θ+$\frac{π}{3}$)+$\frac{3}{2}$=$\frac{5}{6}$,
可得:cos(2θ+$\frac{π}{3}$)=$-\frac{2}{3}$,
∵θ∈[$\frac{π}{3},\frac{2π}{3}$],
∴2θ+$\frac{π}{3}$∈[π,$\frac{5π}{3}$],
∴sin(2θ+$\frac{π}{3}$)=$-\frac{\sqrt{5}}{3}$,
那么:sin2θ=sin[(2θ$+\frac{π}{3}$)-$\frac{π}{3}$]=sin(2θ+$\frac{π}{3}$)cos$\frac{π}{3}$-cos(2θ+$\frac{π}{3}$)sin$\frac{π}{3}$=$\frac{2\sqrt{3}-\sqrt{5}}{6}$.

点评 本题主要考查对三角函数的化简能力和三角函数的图象和性质的运用,利用三角函数公式将函数进行化简是解决本题的关键.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知椭圆E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的离心率为$\frac{2}{3}$,F1,F2分别是它的左、右焦点,且存在直线l,使F1,F2关于l的对称点恰好为圆C:x2+y2-4mx-2my+5m2-4=0(m∈R,m≠0)的一条直径的两个端点.
(1)求椭圆E的方程;
(2)设直线l与抛物线y2=2px(p>0)相交于A,B两点,射线F1A,F1B与椭圆E分别相交于点M,N,试探究:是否存在数集D,当且仅当p∈D时,总存在m,使点F1在以线段MN为直径的圆内?若存在,求出数集D;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.f(x)=sin(ωx+φ)(ω<0)向右平移$\frac{π}{12}$个单位之后图象与g(x)=cos2x的图象重合,则φ=(  )
A.$\frac{5}{12}$πB.$\frac{π}{3}$C.$\frac{5}{12}$π+2kπ(k∈Z)D.$\frac{π}{3}$+2kπ(k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在△ABC中,若a=18,b=24,A=30°,则此三角形解的个数为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在平面直角坐标系中,若角α的顶点与原点重合,始边与x轴的非负半轴重合,终边过点P(-$\sqrt{3}$,-1),则sin($\frac{π}{2}$-α)=(  )
A.$\frac{{\sqrt{3}}}{2}$B.$-\frac{{\sqrt{3}}}{2}$C.$\frac{1}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.等差数列{an}的前n项和为Sn,若S2=2,S4=8,则S6等于18.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知(1-x)10=a0+a1(1+x)+a2(1+x)2+…+a10(1+x)10,则a9=(  )
A.-20B.20C.-10D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图,G是△ABC的重心,D为BC的中点,$\overrightarrow{AB}+\overrightarrow{AC}$=λ$\overrightarrow{GD}$,则λ的值为(  )
A.3B.4C.6D.12

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.将全体正整数排成一个三角形的数阵:

按照以上排列的规律,第n行(n≥2)从左向右的第3个数为n2-2n+4.

查看答案和解析>>

同步练习册答案