精英家教网 > 高中数学 > 题目详情
5.等差数列{an}的前n项和为Sn,若S2=2,S4=8,则S6等于18.

分析 由等差数列{an}的前n项和性质可得:S2,S4-S2,S6-S4成等差数列.即可得出.

解答 解:由等差数列{an}的前n项和性质可得:S2,S4-S2,S6-S4成等差数列.
∴2×6=2+S6-8,解得S6=18.
故答案为:18.

点评 本题考查了等差数列的通项公式与求和公式及其性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.公差不为0的等差数列{an}的部分项${a}_{{k}_{1}}$,${a}_{{k}_{2}}$,${a}_{{k}_{3}}$,…构成等比数列{${a}_{{k}_{n}}$},且k1=1,k2=2,k3=6,则k5为(  )
A.86B.88C.90D.92

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知集合A={y|y=$\frac{4{-e}^{x}}{2}$,x∈R},B={x|y=lg(1-2x)}
(1)求出集合A,集合B;
(2)求(∁UB)∩A.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知f(x)=x2-(m+$\frac{1}{m}$)x+1
(1)当m=2时,解不等式f(x)≤0
(2)若m>0,解关于x的不等式f(x)≥0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知向量$\overrightarrow a$=({cosx,-$\sqrt{3}$cosx),$\overrightarrow b$=(cosx,sinx),函数f(x)=$\overrightarrow a$•$\overrightarrow b$+1.
(Ⅰ)求函数f(x)的单调递增区间;
(Ⅱ)若f(θ)=$\frac{5}{6}$,$θ∈(\frac{π}{3},\frac{2π}{3}),求sin2θ$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.高二(7)班参加冬令营的6位同学排成一排照相,甲乙必须相邻且甲、乙、丙必须从左到右的排法种数为(  )
A.120B.60C.36D.72

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图是从成都某中学参加高三体育考试的学生中抽出的40名学生体育成绩(均为整数)的频率分布直方图,该直方图恰好缺少了成绩在区间[70,80)内的图形,根据图形的信息,回答下列问题:
(1)求成绩在区间[70,80)内的频率,并补全这个频率分布直方图,并估计这次考试的及格率(60分及以上为及格);
(2)从成绩在[80,100]内的学生中选出三人,记在90分以上(含90分)的人数为X,求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在△ABC中,已知a=2,b=2$\sqrt{3}$,B=120°,解此三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设函数f(x)是定义在R上的偶函数,f′(x)为其导函数.当x>0时,xf′(x)+f(x)>0,且f(1)=0,则不等式f(x)>0的解集为(  )
A.(-1,0)∪(0,1)B.(-1,0)∪(1,+∞)C.(-∞,-1)∪(1,+∞)D.(-∞,-1)∪(0,1)

查看答案和解析>>

同步练习册答案