精英家教网 > 高中数学 > 题目详情
10.高二(7)班参加冬令营的6位同学排成一排照相,甲乙必须相邻且甲、乙、丙必须从左到右的排法种数为(  )
A.120B.60C.36D.72

分析 根据题意,假设剩余的3人是A、B、C,先将甲、乙、丙排好,分析空位的数目,依次分析A、B、C的安排方法数目,由分步计数原理计算可得答案.

解答 解:根据题意,假设剩余的3人是A、B、C,
先将甲、乙、丙从左到右排好,排好后,除去甲乙之间的空位有3个空位,
在3个空位中任选一个,安排A,有C31=3种情况,排好后,除去甲乙之间的空位有4个空位,
在4个空位中任选一个,安排B,有C41=4种情况,排好后,除去甲乙之间的空位有5个空位,
在5个空位中任选一个,安排C,有C51=5种情况,
则一共有3×4×5=60种安排方法;
故选:B.

点评 本题考查排列、组合的应用,注意“甲、乙、丙必须从左到右”排列这一条件,用插空法分析.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.如图,已知O为△ABC的外心,角A、B、C的对边分别为a、b、c.
(1)若5$\overrightarrow{OA}$+4$\overrightarrow{OB}$+3$\overrightarrow{OC}$=$\overrightarrow{0}$,求cos∠BOC的值;
(2)若$\overrightarrow{CO}$•$\overrightarrow{AB}$=$\overrightarrow{BO}$•$\overrightarrow{CA}$,求$\frac{{b}^{2}+{c}^{2}}{{a}^{2}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.对于椭圆$\frac{x^2}{4}+\frac{y^2}{3}=1$,下面说法正确的是(  )
A.长轴长为2B.短轴长为3C.离心率为$\frac{1}{2}$D.焦距为1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在△ABC中,角A,B,C所对的边分别为a,b,c,若acosA=bsinb,且$B>\frac{π}{2}$,则sinA+sinC的最大值是$\frac{9}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.等差数列{an}的前n项和为Sn,若S2=2,S4=8,则S6等于18.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.如图某综艺节目现场设有A,B,C,D四个观众席,现有由5不同颜色的马甲可供现场观众选择,同一观众席上的马甲的颜色相同,相邻观众席上的马甲的颜色不相同,则不同的安排方法种数为260.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图所示,在正方体ABCD-A1B1C1D1中,己知棱长为a,M,N分别是BD和AD的中点,则B1M与D1N所成角的余弦值为(  )
A.-$\frac{\sqrt{15}}{15}$B.$\frac{\sqrt{30}}{10}$C.-$\frac{\sqrt{30}}{10}$D.$\frac{\sqrt{15}}{15}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知f(x)=lnx+$\frac{1}{8}$x2
(1)求曲线f(x)在x=1处的切线方程;
(2)设P为曲线f(x)上的点,求曲线C在点P处切线的斜率的最小值及倾斜角α的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,直三棱柱ABC-A1B1C1中,AD⊥平面A1BC,其垂足D落在直线A1B上,P为AC的中点.
(Ⅰ)求证:B1C∥平面A1PB;
(Ⅱ)若AD=$\sqrt{3}$,AB=BC=2,求直线A1C与平面AA1B1B所成的角的正切值.

查看答案和解析>>

同步练习册答案