精英家教网 > 高中数学 > 题目详情
19.已知f(x)=lnx+$\frac{1}{8}$x2
(1)求曲线f(x)在x=1处的切线方程;
(2)设P为曲线f(x)上的点,求曲线C在点P处切线的斜率的最小值及倾斜角α的取值范围.

分析 (1)求导数,确定切线的斜率,即可求曲线f(x)在x=1处的切线方程;
(2)求导数,确定切线的斜率的范围,即可得出结论.

解答 解:(1)∵f(x)=lnx+$\frac{1}{8}$x2
∴f′(x)=$\frac{1}{x}$+$\frac{1}{4}$x,
x=1时,f′(1)=$\frac{5}{4}$,f(1)=$\frac{1}{8}$,
∴曲线f(x)在x=1处的切线方程为y-$\frac{1}{8}$=$\frac{5}{4}$(x-1),即10x-8y-9=0;
(2)x>0,f′(x)=$\frac{1}{x}$+$\frac{1}{4}$x≥1,
∴曲线C在点P处切线的斜率的最小值为1,倾斜角α的取值范围为[$\frac{π}{4}$,$\frac{π}{2}$).

点评 本题考查导数知识的运用,考查导数的几何意义,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知数列{an}满足递推关系:an+1=$\frac{{a}_{n}}{{a}_{n}+1}$,a1=$\frac{1}{2}$,则a2017=(  )
A.$\frac{1}{2016}$B.$\frac{1}{2017}$C.$\frac{1}{2018}$D.$\frac{1}{2019}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.高二(7)班参加冬令营的6位同学排成一排照相,甲乙必须相邻且甲、乙、丙必须从左到右的排法种数为(  )
A.120B.60C.36D.72

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在公比为2的等比数列{an}中,a1a3=6a2,则a4等于(  )
A.4B.8C.12D.24

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在△ABC中,已知a=2,b=2$\sqrt{3}$,B=120°,解此三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.计算:sin72°cos18°+cos72°sin18°=(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设${(3x+\sqrt{x})}^{n}$的展开式的各项系数之和为M,二项式系数之和为N,若M-N=240.
(1)求n;
(2)求展开式中所有x的有理项.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.复数z满足(z+2i)i=3-i,则|z|=$\sqrt{26}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在等比数列{an}中,若a3,a7是方程x2-4x+3=0的两根,则a5=(  )
A.±$\sqrt{3}$B.-$\sqrt{3}$C.$\sqrt{3}$D.±3

查看答案和解析>>

同步练习册答案