精英家教网 > 高中数学 > 题目详情
9.如图,G是△ABC的重心,D为BC的中点,$\overrightarrow{AB}+\overrightarrow{AC}$=λ$\overrightarrow{GD}$,则λ的值为(  )
A.3B.4C.6D.12

分析 根据向量加法的平行四边形法则,求和得到结果.

解答 解:∵点G是△ABC的重心,D是AB的中点,
$\overrightarrow{GD}$=$\frac{1}{3}$$\overrightarrow{AD}$=$\frac{1}{3}$($\overrightarrow{AB}$+$\overrightarrow{BD}$)=$\frac{1}{3}$$\overrightarrow{AB}$+$\frac{1}{6}$$\overrightarrow{BC}$=$\frac{1}{3}$$\overrightarrow{AB}$+$\frac{1}{6}$($\overrightarrow{AC}$-$\overrightarrow{AB}$)=$\frac{1}{6}$$\overrightarrow{AB}$+$\frac{1}{6}$$\overrightarrow{AC}$=$\frac{1}{λ}$($\overrightarrow{AB}$+$\overrightarrow{AC}$),
∴λ=6,
故选:C.

点评 本题考查三角形的重心,考查三角形重心的性质,考查向量加法的平行四边形法则,考查向量的加减运算,是一个比较简单的综合题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.在一项调查中有两个变量x(单位:千元)和y(单位:t),如图是由这两个变量近8年来的取值数据得到的散点图,那么适宜作为y关于x的回归方程类型的是(  )
A.y=a+bxB.y=c+d$\sqrt{x}$C.y=m+nx2D.y=p+qex(q>0)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知向量$\overrightarrow a$=({cosx,-$\sqrt{3}$cosx),$\overrightarrow b$=(cosx,sinx),函数f(x)=$\overrightarrow a$•$\overrightarrow b$+1.
(Ⅰ)求函数f(x)的单调递增区间;
(Ⅱ)若f(θ)=$\frac{5}{6}$,$θ∈(\frac{π}{3},\frac{2π}{3}),求sin2θ$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图是从成都某中学参加高三体育考试的学生中抽出的40名学生体育成绩(均为整数)的频率分布直方图,该直方图恰好缺少了成绩在区间[70,80)内的图形,根据图形的信息,回答下列问题:
(1)求成绩在区间[70,80)内的频率,并补全这个频率分布直方图,并估计这次考试的及格率(60分及以上为及格);
(2)从成绩在[80,100]内的学生中选出三人,记在90分以上(含90分)的人数为X,求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数F(x)与f(x)=lnx的图象关于直线y=x对称.
(Ⅰ)不等式xf(x)≥ax-1对任意x∈(0,+∞)恒成立,求实数a的最大值;
(Ⅱ)设f(x)F(x)=1在(1,+∞)内的实根为x0,m(x)=$\left\{\begin{array}{l}{xf(x),1<x≤{x}_{0}}\\{\frac{x}{F(x)},x>{x}_{0}}\end{array}\right.$,若在区间(1,+∞)上存在m(x1)=m(x2)(x1<x2),证明:$\frac{{x}_{1}+{x}_{2}}{2}$>x0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在△ABC中,已知a=2,b=2$\sqrt{3}$,B=120°,解此三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=$\frac{{e}^{x+b}}{x}$过点(1,e).
(1)求y=f(x)的单调区间;
(2)当x>0时,求$\frac{f(x)}{x}$的最小值;
(3)试判断方程f(x)-mx=0(m∈R且m为常数)的根的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)是R上的偶函数,且满足f(x+2)=-f(x),当x∈[0,1]时,f(x)=2-x,则f(2016)+f(-2017)的值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.观察(1)sin220°+cos250°+sin20°cos50°=$\frac{3}{4}$;(2)sin28°+cos238°+sin8°cos38°=$\frac{3}{4}$,两式的结构特点可提出一个猜想的等式为sin2α+cos2(α+30°)+sinαcos(α+30°)=$\frac{3}{4}$.

查看答案和解析>>

同步练习册答案