精英家教网 > 高中数学 > 题目详情
19.在一项调查中有两个变量x(单位:千元)和y(单位:t),如图是由这两个变量近8年来的取值数据得到的散点图,那么适宜作为y关于x的回归方程类型的是(  )
A.y=a+bxB.y=c+d$\sqrt{x}$C.y=m+nx2D.y=p+qex(q>0)

分析 由散点图可得,图象是抛物线形状,则适宜作为y关于x的回归方程类型的是y=c+d$\sqrt{x}$.

解答 解:由散点图可得,图象是抛物线形状,则适宜作为y关于x的回归方程类型的是y=c+d$\sqrt{x}$,
故选B.

点评 本题考查散点图,考查数形结合的数学思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.如图,在多面体ABCDEF中,底面ABCD是边长为2的菱形,∠BAD=60°,四边形BDEF是矩形,平面BDEF⊥平面ABCD
(1)在图中画出过点B,D的平面α,使得α∥平面AEF(必须说明画法,不需证明);
(2)若二面角α-BD-C是45°,求FB与平面α所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的离心率为$\frac{2}{3}$,F1,F2分别是它的左、右焦点,且存在直线l,使F1,F2关于l的对称点恰好为圆C:x2+y2-4mx-2my+5m2-4=0(m∈R,m≠0)的一条直径的两个端点.
(1)求椭圆E的方程;
(2)设直线l与抛物线y2=2px(p>0)相交于A,B两点,射线F1A,F1B与椭圆E分别相交于点M,N,试探究:是否存在数集D,当且仅当p∈D时,总存在m,使点F1在以线段MN为直径的圆内?若存在,求出数集D;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.复数z=(1+i)+(-2+2i)在复平面内对应的点位于第二象限.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.若数列{An}对任意的n∈N*,都有${A_{n+1}}={A_n}^k$(k≠0),且An≠0,则称数列{An}为“k级创新数列”.
(1)已知数列{an}满足${a_{n+1}}=2{a_n}^2+2{a_n}$且${a_1}=\frac{1}{2}$,试判断数列{2an+1}是否为“2级创新数列”,并说明理由;
(2)已知正数数列{bn}为“k级创新数列”且k≠1,若b1=10,求数列{bn}的前n项积Tn
(3)设α,β是方程x2-x-1=0的两个实根(α>β),令$k=\frac{β}{α}$,在(2)的条件下,记数列{cn}的通项${c_n}={β^{n-1}}•{log_{b_n}}{T_n}$,求证:cn+2=cn+1+cn,n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知正三棱柱ABC-A1B1C1的顶点A1,B1,C1在同一球面上,且平面ABC经过球心,若此球的表面积为4π,则该三棱柱的侧面积的最大值为(  )
A.$\frac{\sqrt{3}}{2}$B.$\sqrt{3}$C.$\frac{3\sqrt{3}}{2}$D.3$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.f(x)=sin(ωx+φ)(ω<0)向右平移$\frac{π}{12}$个单位之后图象与g(x)=cos2x的图象重合,则φ=(  )
A.$\frac{5}{12}$πB.$\frac{π}{3}$C.$\frac{5}{12}$π+2kπ(k∈Z)D.$\frac{π}{3}$+2kπ(k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在△ABC中,若a=18,b=24,A=30°,则此三角形解的个数为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图,G是△ABC的重心,D为BC的中点,$\overrightarrow{AB}+\overrightarrow{AC}$=λ$\overrightarrow{GD}$,则λ的值为(  )
A.3B.4C.6D.12

查看答案和解析>>

同步练习册答案