精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆C1 + =1(a>b>0)的离心率为 ,P(﹣2,1)是C1上一点.
(1)求椭圆C1的方程;
(2)设A,B,Q是P分别关于两坐标轴及坐标原点的对称点,平行于AB的直线l交C1于异于P、Q的两点C,D,点C关于原点的对称点为E.证明:直线PD、PE与y轴围成的三角形是等腰三角形.

【答案】
(1)解:由题意可得e= = ,且a2﹣b2=c2

将P(﹣2,1)代入椭圆方程可得 + =1,

解得a=2 ,b= ,c=

即有椭圆方程为 + =1


(2)解:证明:A,B,Q是P(﹣2,1)分别关于两坐标轴及坐标原点的对称点,

可设A(﹣2,﹣1),B(2,1),Q(2,﹣1),

直线l的斜率为k= ,设直线l的方程为y= x+t,(t≠0)

代入椭圆x2+4y2=8,可得x2+2tx+2t2﹣4=0,

设C(x1,y1),D(x2,y2),E(﹣x1,﹣y1),

即有△=4t2﹣4(2t2﹣4)>0,解得﹣2<t<2,(t≠0)

x1+x2=﹣2t,x1x2=2t2﹣4,

设直线PD,PE的斜率为k1,k2

则k1+k2= + =

要证直线PD、PE与y轴围成的三角形是等腰三角形,

只需证k1+k2=0,即(2﹣x1)(y2﹣1)﹣(2+x2)(y1+1)=0,

由y1= x1+t,y2= x2+t,

可得(2﹣x1)(y2﹣1)﹣(2+x2)(y1+1)=2(y2﹣y1)﹣(x1y2+x2y1)+x1﹣x2﹣4

=x2﹣x1﹣(x1x2+tx1+tx2)+x1﹣x2﹣4=﹣x1x2﹣t(x1+x2)﹣4

=﹣(2t2﹣4)+2t2﹣4=0,

则直线PD、PE与y轴围成的三角形是等腰三角形


【解析】(1)运用椭圆的离心率公式和P满足椭圆方程,解得a,b,进而得到椭圆方程;(2)设A(﹣2,﹣1),B(2,1),Q(2,﹣1),设直线l的方程为y= x+t,代入椭圆方程,设C(x1 , y1),D(x2 , y2),E(﹣x1 , ﹣y1),运用韦达定理,设直线PD,PE的斜率为k1 , k2 , 要证直线PD、PE与y轴围成的三角形是等腰三角形,只需证k1+k2=0,化简整理,代入韦达定理,即可得证.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2x

(1)试求函数F(x)=f(x)+f(2x),x∈(﹣∞,0]的最大值;

(2)若存在x∈(﹣∞,0),使|af(x)﹣f(2x)|>1成立,试求a的取值范围;

(3)当a0,且x∈[0,15]时,不等式f(x+1)≤f[(2x+a)2]恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂家拟在2019年举行促销活动,经过调查测算,该产品的年销量(即该厂的年产量)(单位:万件)与年促销费用)(单位:万元)满足为常数)如果不搞促销活动,则该产品的年销量只能是1万件. 已知2019年生产该产品的固定投入为6万元,每生产1万件该产品需要再投入12万元,厂家将每件产品的销售价格定为每件产品平均成本的1.5倍(产品成本包括固定投入和再投入两部分).

(1)将该厂家2019年该产品的利润万元表示为年促销费用万元的函数;

(2)该厂家2019年的年促销费用投入多少万元时,厂家利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司试销一种成本单价为500元的新产品,规定试销时销售单价不低于成本单价,又不高于800元.经试销调查,发现销售量y()与销售单价x()之间的关系可近似看作一次函数ykxb(k≠0),函数图象如图所示.

(1)根据图象,求一次函数ykxb(k≠0)的表达式;

(2)设公司获得的毛利润(毛利润=销售总价-成本总价)S元.试问销售单价定为多少时,该公司可获得最大毛利润?最大毛利润是多少?此时的销售量是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是双曲线上一点, 分别是双曲线左、右两个焦点,若,则等于( )

A. 1 B. 17 C. 1或17 D. 以上答案均不对

【答案】B

【解析】根据双曲线的定义得到 根据双曲线的焦半径的范围得到 故结果为17.

故答案为:B。

型】单选题
束】
10

【题目】某中学学生会为了调查爱好游泳运动与性别是否有关,通过随机询问110名性别不同的高中生是否爱好游泳运动得到如下的列联表:由并参照附表得到的正确结论是

A. 在犯错误的概率不超过的前提下认为“爱好游泳运动与性别有关”

B. 在犯错误的概率不超过的前提下认为“爱好游泳运动与性别无关”

C. 的把握认为“爱好游泳运动与性别有关”

D. 的把握认为“爱好游泳运动与性别无关”

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在直角坐标系xOy中,圆C的参数方程为 (θ为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为 . (Ⅰ)求圆C的普通方程和直线l的直角坐标方程;
(Ⅱ)设M是直线l上任意一点,过M做圆C切线,切点为A、B,求四边形AMBC面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(a>0,a≠1,m≠﹣1),是定义在(﹣1,1)上的奇函数.

(I)求f(0)的值和实数m的值;

(II)当m=1时,判断函数f(x)在(﹣1,1)上的单调性,并给出证明;

(III)若且f(b﹣2)+f(2b﹣2)>0,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面是边长为2的菱形, 为平面外一点,且底面上的射影为四边形的中心, 上一点,

(Ⅰ)若上一点,且,求证: 平面

(Ⅱ)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为 为过定点的两条直线.

(1)若与抛物线均无交点,且,求直线的斜率的取值范围;

(2)若与抛物线交于两个不同的点,以为直径的圆过点,求圆的方程.

查看答案和解析>>

同步练习册答案