精英家教网 > 高中数学 > 题目详情
10.如图所示,四棱锥P-ABCD,底面ABCD是边长为2的菱形,∠ABC=60°,O为AC,BD的交点,且PO⊥平面ABCD,PO=$\sqrt{6}$,点M为侧棱PD上一点,且满足PD⊥平面ACM.
(1)若在棱PD上存在一点N,且BN∥平面AMC,确定点N的位置,并说明理由;
(2)求点B到平面MCD的距离.

分析 (1)当N为PD中点时,能推导出MO∥BN,由此能求出当N为PD中点时,BN∥平面AMC.
(2)设点B到平面MCD的距离为h,由${V}_{M-ABC}={V}_{B-AMC}=\frac{1}{3}×\frac{\sqrt{3}}{4}×4×\frac{\sqrt{6}}{3}$=$\frac{\sqrt{2}}{3}$,能求出B到面MAC的距离.

解答 解:(1)当N为PD中点时,BN∥平面AMC.
理由如下:
∵M为边PD的三等分点,
∴MO为△BND的中位线,
∴MO∥BN,
∵MO?面AMC,BN?面AMC,
∴当N为PD中点时,BN∥平面AMC.
(2)∵PO=$\sqrt{6}$,四棱锥P-ABCD,底面ABCD是边长为2的菱形,∠ABC=60°,
∴OD=$\sqrt{{2}^{2}-{1}^{2}}$=$\sqrt{3}$,∴PD=$\sqrt{(\sqrt{3})^{2}+(\sqrt{6})^{2}}$=3,
∴PM=2,MD=1,
∴OM⊥PD,∴OM=$\sqrt{2}$,
∴${S}_{△MAC}=\frac{1}{2}×AC×OM=\sqrt{2}$,
设点B到平面MCD的距离为h.
∵${V}_{M-ABC}={V}_{B-AMC}=\frac{1}{3}×\frac{\sqrt{3}}{4}×4×\frac{\sqrt{6}}{3}$=$\frac{\sqrt{2}}{3}$,
∴VB-AMC=$\frac{1}{3}×{S}_{△MAC}×h$=$\frac{\sqrt{2}}{3}h=\frac{\sqrt{2}}{3}$,
解得h=1.
∴B到面MAC的距离为1.

点评 本题考查满足线面平行的点的位置的确定,考查点到平面的距离的求法,是中档题,解题时要认真审题,注意等体积法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知集合A={x|2x2+ax+2=0,a∈R},B={x|x2+3x+2a=0,a∈R},A∩B={2}且A∪B=I,则(∁IA)∪(∁IB)=(  )
A.{-5,$\frac{1}{2}$}B.{-5,$\frac{1}{2}$,2}C.{-5,2}D.{$\frac{1}{2}$,2}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数f(x)=$\sqrt{2+x}+\sqrt{3-x}$的定义域为[-2,3].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设集合M={x|x2-3x+2>0},集合N={x|x≤-2},则M∩N=(  )
A.{x|x>-2}B.{x|x≤-2}C.{x|x>-1}D.{x|x≥-2}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知$sin(\frac{π}{4}-θ)$=$\frac{{2\sqrt{2}}}{3}$,则sin2θ=-$\frac{7}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设全集U={l,3,5,7,9},集合M={1,a-5},M⊆U且∁UM={3,5,7},则实数a=14.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.计算lg200+$\frac{1}{2}$lg25+5(lg2+lg5)3-($\frac{1}{27}$)${\;}^{-\frac{1}{3}}$=(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在样本频率分布直方图中,共有9个小长方形,若中间一个小长方形的面积等于其它8个长方形的面积和的$\frac{2}{5}$,且样本容量为140,则中间一组的频数为40.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.计算:
(1)(2$\frac{7}{9}$)0.5+0.1-2+(2$\frac{10}{27}$)${\;}^{-\frac{2}{3}}$-3π0+$\frac{37}{48}$;   
(2)$\frac{lg2+lg5-lg8}{lg50-lg40}$+log${\;}_{\sqrt{2}}$$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

同步练习册答案