精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x|x-2|
(1)画出该函数的图象;
(2)设a>2,求f(x)在[0,a]上的最大值.
考点:函数的图象
专题:函数的性质及应用
分析:(1)利用零点分段法,将函数的解析式化为分段函数的形式,进而根据二次函数的图象,得到函数f(x)=x|x-2|的图象.
(2)根据(1)中函数图象,分析a与1+
2
的关系,进而分类讨论可得不同情况下函数的最值.
解答: 解:(1)∵f(x)=x|x-2|=
x2-2x,x≥2
-x2+2x,x<2

∴函数的图象如下图所示:

(2)当a>2时,令f(a)-f(1)=a2-2a-1=0,
解得a=1+
2
,或a=1-
2
(舍去),
当2<a<1+
2
时,f(a)<f(1),
此时f(x)在[0,a]上的最大值f(x)max=f(1)=1,
当a≥1+
2
时,f(a)≥f(1),
此时f(x)在[0,a]上的最大值f(x)max=f(a)=a2-2a.%
点评:本题考查的知识点是函数的图象,函数的最值,其中熟练掌握零点分段法及分段函数图象的画法,是解答的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,正三棱柱ABC-A1B1C1的所有棱长都为2,D为CC1中点.
(1)求二面角B1-BD-A1的余弦值;
(2)求点C1到平面A1BD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=log2x与函数y=g(x)的图象关于x=1对称.
(1)求g(x)的解析式,并求其定义域;
(2)若关于x的不等式f(x)+g(x)<log2(x2-2ax+2a+4)(a∈R)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:直三棱柱ABC-DEF中,AB=
2
,BC=1,BE=2,AB⊥平面BCFE,M是CF的中点.
(1)证明:AM⊥ME.
(2)求二面角A-ME-B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(-3,4),|
b
|=2,
a
b
的夹角是60°.
(1)求
a
b
的值; 
(2)求|
a
-2
b
|.

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆
x2
a2
+
y2
b2
=1(a>b>0)的左,右焦点分别为F1,F2,离心率e=
2
2
,过F1F2分别作直线l1,l2且l1⊥l2,l1,l2分别交直线l:x=
2
a于M,N两点.
(Ⅰ)若|
F1M
|=|
F2N
|=2
5
,求椭圆的方程;
(Ⅱ)当|
MN
|取最小值时,试探究|
F1M
|+|
F2N
|与
F1F2
的关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

设F1,F2为椭圆
x2
36
+
y2
16
=1的两个焦点,P是椭圆上一点,已知P,F1,F2是一个直角三角形的三个顶点,且|
PF1
|>|
PF2
|.
(1)求|PF1|的长度;
(2)求
|PF1|
|PF2|
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在锐角△ABC中,内角A,B,C所对的边分别为a,b,c,若csinC-asinA=b(sinB-sinA),c=2.
(Ⅰ)若△ABC的面积为
2
3
3
,求a,b的值;
(Ⅱ)设△ABC的周长为y,试求函数y=f(A)的定义域和最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
(1)必然事件的概率为1;
(2)概率为0的事件是不可能事件;
(3)若随机事件A,B是对立事件,则A,B也是互斥事件;
(4)若事件A,B相互独立,则P(
.
A
•B)=P(
.
A
)•P(B)
真命题的序号为
 

查看答案和解析>>

同步练习册答案