精英家教网 > 高中数学 > 题目详情
如图,正三棱柱ABC-A1B1C1的所有棱长都为2,D为CC1中点.
(1)求二面角B1-BD-A1的余弦值;
(2)求点C1到平面A1BD的距离.
考点:二面角的平面角及求法,点、线、面间的距离计算
专题:空间位置关系与距离,空间角
分析:(1)取BC中点O,连结AO,由已知条件得AO⊥BC,平面ABC⊥平面BCC1B1,以O为原点,
OB
OO1
OA
的方向为x,y,z轴的正方向,建立空间直角坐标系,利用向量法能求出二面角B1-BD-A1的余弦值.
(2)由
AB1
=(1,2,-
3
)为平面A1BD的法向量,
DC1
=(0,1,0),利用向量法能求出C1点到A1BD的距.
解答: 解:(1)取BC中点O,连结AO,
∵△ABC为正三角形,∴AO⊥BC.
∵在正三棱柱ABC-A1B1C1中,平面ABC⊥平面BCC1B1
∴AO⊥平面BCC1B1
取B1C1中点O1,以O为原点,
OB
OO1
OA
的方向为x,y,z轴的正方向,
建立空间直角坐标系,
则B(1,0,0),D(-1,1,0),A1(0,2,
3
),
A(0,0,
3
),B1(1,2,0),C1(-1,2,0)
AB1
=(1,2,-
3
),
BD
=(-2,1,0),
BA1
=(-1,2,
3
)

AB1
BD
=0,
AB1
BA1
=0

AB1
BD
AB1
BA1
,∴AB1⊥平面BDA1
AB1
=(1,2,-
3
)为平面BDA1的法向量.
取平面B1BD的一个法向量为
n 
=(0 0 
3
)

cos<
n
AB1
>=
n
AB1
|n
AB1
|
=
-3
2
2
3
=-
6
4

∴二面角B1-BD-A1的余弦值为
6
4

(2)∵
AB1
=(1,2,-
3
)为平面A1BD的法向量,
DC1
=(0,1,0)
∴C1点到平面A1BD的距离为:
d=|
DC1
AB1
|AB1|
|=|
(0,1,0)•(1,2,-
3
)
1+4+3
|=
2
2
2
=
2
2
点评:本题考查二面角的余弦值的求法,考查点到平面的距离的求法,解题时要认真审题,注意向量法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1的一条渐近线方程为4x+3y=0,则双曲线的离心率为(  )
A、
5
3
B、
4
3
C、
5
4
D、
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD是矩形.已知AB=4,AD=2,PA=2,PD=2
2
,∠PAB=60°.
(1)证明AD⊥平面PAB;
(2)求异面直线PC与AD所成的角的大小;
(3)求二面角P-BD-A的平面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设A={x∈Z|-6≤x≤6},B={1,2,3},C={3,4,5,6}求:(1)B∩C;(2)A∩∁A(B∪C)

查看答案和解析>>

科目:高中数学 来源: 题型:

某中学为推进后勤社会化改革,与建筑公司商定:由该公司向建设银行贷款500万元为某中学修建可容纳一千人的学生公寓.工程于2010年初动工,年底竣工并交付使用,公寓管理处采用向学生收费还建行贷款(年利率5%,按复利计算).公寓每年所收费用除去物业管理费和水电费共18万元,其余部分全部在年底还建行贷款.
(1)若公寓收费标准定为每生每年800元,问到哪一年底可以还清全部贷款;
(2)若公寓管理处要在2018年底把贷款全部还清,则每生每年的最低收费标准是多少元?(精确到元)
(lg1.7343=0.239,lg1.05=0.0212,1.058=1.4774)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱锥P-ABC中,PA=PB=AB=BC,∠PBC=90°,D为AC的中点,AB⊥PD.
(1)求证:平面PAB⊥平面ABC;
(2)求二面角B-PD-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三棱柱ABC-A1B1C1的各条棱长均为2,点B1在平面ABC内的射影恰好落在AC边的中点O处.
(1)求点A到平面BCC1B1的距离;
(2)棱BB1上是否存在点P,使得二面角P-AC-B的大小为60°?若存在,请确定点P的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥S-ABCD中,底面ABCD是边长为4的正方形,O是AC与BD的交点,SO⊥平面ABCD,E是侧棱SC的中点,直线SA和AO所成角的大小是45°.
(1)求证:直线SA∥平面BDE;
(2)求直线BD与平面SBC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x|x-2|
(1)画出该函数的图象;
(2)设a>2,求f(x)在[0,a]上的最大值.

查看答案和解析>>

同步练习册答案