精英家教网 > 高中数学 > 题目详情
如图,在三棱锥P-ABC中,PA=PB=AB=BC,∠PBC=90°,D为AC的中点,AB⊥PD.
(1)求证:平面PAB⊥平面ABC;
(2)求二面角B-PD-C的余弦值.
考点:用空间向量求平面间的夹角,平面与平面垂直的判定,二面角的平面角及求法
专题:空间角
分析:(Ⅰ)根据已知条件,取AB的中点O,连结PO、OD,得到PO⊥AB,再利用AB⊥PD,根据线面垂直判定定理证明AB⊥平面POD,从而得到AB垂直平面POD内的线OD,再利用OD为中位线,得出OD⊥平面PAB,最后利用面面垂直的判定证明平面PAB垂直平面ABC.
(Ⅱ)由(Ⅰ)知OB、OD、OP两两垂直,由此建立空间直角坐标系,利用向量法能求出二面角B-PD-C的余弦值.
解答: (1)证明:取AB中点为O,连结OD、OP,
∵PA=PB,∴AB⊥OP,
又AB⊥PD,OP∩PD=P,
∴AB⊥平面POD,
∵OD?平面POD,∴AB⊥OD,
由已知,BC⊥PB,又OD∥BC,∴OD⊥PB,
∵AB∩PB=B,∴OD⊥平面PAB,
又OD?平面ABC,∴平面PAB⊥平面ABC.
(Ⅱ)解:由(Ⅰ)知OB、OD、OP两两垂直,
以O为坐标原点,以OB为x轴,OD为y轴,OP为z轴,
建立空间直角坐标系,
设OB=1,则B(1,0,0),P(0,0,
3
),D(0,1,0),C(1,2,0),
BD
=(-1,1,0)
PD
=(0,1,-
3
)
DC
=(1,1,0)

m
=(x,y,z),是平面PDB的法向量,
m
BD
=-x+y=0
m
PD
=y-
3
z=0
,取z=1,得
m
=(
3
3
,1)

设平面PDC的法向量
n
=(x1y1z1)

n
PD
=x1-
3
z1=0
n
DC
=x1+y1=0
,取x1 =
3
,得
n
=(
3
,-
3
,1)

∴cos<
m
n
>=
3-3+1
7
7
=
1
7

由图形知二面角B-PD-C是钝二面角,
∴二面角B-PD-C的余弦值为-
1
7
点评:本题以三棱锥为向何背景的考查线线垂直、平行的判定,考查线面垂直、面面垂直的判定以及用空间向量法求二面角的余弦值,考查空间想象能力和计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,正方体ABCD-EFGH中,M为BG的中点,则直线DM与平面ABCD所成角的正切值为(  )
A、
5
6
B、
5
5
C、
5
D、
2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知ABCD是正方形,PD⊥平面ABCD,PD=
3
AD
,设点E是棱PB上的动点(不含端点),过点A,D,E的平面交棱PC于点F.
(1)求证:BC∥EF;
(2)求二面角A-PB-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量:
a
=(2cos(x-
π
6
),2sin(x-
π
4
)),
b
=(cos(x-
π
6
),sin(x+
π
4
)),(x∈R),函数f(x)=
a
b
-1.
(1)求函数f(x)的最小正周期和图象的对称轴方程;
(2)求函数f(x)在区间[-
π
12
π
2
]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正三棱柱ABC-A1B1C1的所有棱长都为2,D为CC1中点.
(1)求二面角B1-BD-A1的余弦值;
(2)求点C1到平面A1BD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=2,an+1=2an-n+1,(n∈N*),
(1)求证数列{an-n}为等比数列.
(2)判断265是否是数列{an}中的项,若是,指出是第几项,并求出该项以前所有项的和(不含265),若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

学校从参加高一年级期中考试的学生中抽出50名学生,并统计了他们的数学成绩(成绩均为整数且满分为100分),数学成绩分组及各组频数如下:[40,50),2;[50,60),3;[60,70),14;[70,80),15;[80,90),12;[90,100],4.
(1)在给出的样本频率分布表中,求A,B,C,D的值;
(2)估计成绩在80分以上(含80分)学生的比例;
(3)为了帮助成绩差的学生提高数学成绩,学校决定成立“二帮一”小组,即从成绩在[90,100]的学生中选两位同学,共同帮助成绩在[40,50)中的某一位同学.已知甲同学的成绩为42分,乙同学的成绩为95分,求甲、乙两同学恰好被安排在同一小组的概率.
样本频率分布表:
分组 频数 频率
[40,50) 2 0.04
[50,60) 3 0.06
[60,70) 14 0.28
[70,80) 15 0.30
[80,90) A B
[90,100] 4 0.08
合计 C D

查看答案和解析>>

科目:高中数学 来源: 题型:

如图已知圆锥SO的底面半径为4,母线长为8,三角形SAB是圆锥的一个轴截面,D是SA上的一点,且SD=
8
3
3
.动点M从点B出发沿着圆锥的侧面运动到达点D,当其运动路程最短时在侧面留下的曲线Γ如图所示.将轴截面SAB绕着轴SO逆时针旋转θ(0<θ<π)后,母线SB1与曲线Γ相交于点P.
(Ⅰ)若θ=
π
2
,证明:平面A1B1P⊥平面ABP;
(Ⅱ)若θ=
3
,求二面角B1-AB-P的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆
x2
a2
+
y2
b2
=1(a>b>0)的左,右焦点分别为F1,F2,离心率e=
2
2
,过F1F2分别作直线l1,l2且l1⊥l2,l1,l2分别交直线l:x=
2
a于M,N两点.
(Ⅰ)若|
F1M
|=|
F2N
|=2
5
,求椭圆的方程;
(Ⅱ)当|
MN
|取最小值时,试探究|
F1M
|+|
F2N
|与
F1F2
的关系.

查看答案和解析>>

同步练习册答案