精英家教网 > 高中数学 > 题目详情
如图,正方体ABCD-EFGH中,M为BG的中点,则直线DM与平面ABCD所成角的正切值为(  )
A、
5
6
B、
5
5
C、
5
D、
2
考点:直线与平面所成的角
专题:空间角
分析:过M作MN⊥BC,交BC于N,连结DN,则∠MDN直线DM与平面ABCD所成角,由此能求出直线与平面所成角的正切值.
解答: 解:过M作MN⊥BC,交BC于N,连结DN,
∵正方体ABCD-EFGH中,M为BG的中点,
∴MN⊥平面ABCD,
∴∠MDN直线DM与平面ABCD所成角,
设正方体ABCD-EFGH的棱长为a,
则MN=
1
2
a
,DN=
a2+(
1
2
a)2
=
5
2
a

∴tan∠MDN=
MN
DN
=
1
2
a
5
2
a
=
5
5

故选:B.
点评:本题考查直线与平面所成角的正切值的求法,解题时要认真审题,注意空间思维能力的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数y=cosx•ln|x|的部分图象大致是下图中的(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

把函数y=cosx的图象向左平移
π
4
个单位,然后把,图象上的所有点的横坐标缩小到原来的
1
2
(纵坐标不变),则所得图形对应的函数解析式为(  )
A、y=cos(
1
2
x+
π
4
B、y=cos(2x+
π
4
C、y=cos(
1
2
x+
π
8
D、y=cos(2x+
π
2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在以AB为直径的半圆周上,有异于A、B的六个点C1、C2、C3、C4、C5、C6,直径AB上有异于A、B的四个点D1、D2、D3、D4.以这10个点中的3个点为顶点作三角形可作出多少个(  )
A、116B、128
C、215D、98

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1的一条渐近线方程为4x+3y=0,则双曲线的离心率为(  )
A、
5
3
B、
4
3
C、
5
4
D、
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

现有数列{an}满足:a1=1,且对任意的m,n∈N*都有:am+n=am+an+mn,则
1
a1
+
1
a2
+
1
a3
+…+
1
a2014
=
(  )
A、
2014
2015
B、
2012
1007
C、
2013
2014
D、
4028
2015

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示是《函数的应用》的知识结构图,如果要加入“用二分法求方程的近似解”,则应该放在(  )
A、“函数与方程”的上位
B、“函数与方程”的下位
C、“函数模型及其应用”的上位
D、“函数模型及其应用”的下位

查看答案和解析>>

科目:高中数学 来源: 题型:

力综合治理交通拥堵状况,缓解机动车过快增长势头,一些大城市出台了“机动车摇号上牌”的新规.某大城市2014年初机动车的保有量为600万辆,预计此后每年将报废本年度机动车保有量的5%,且报废后机动车的牌照不再使用,同时每年投放10万辆的机动车牌号,只有摇号获得指标的机动车才能上牌,经调研,获得摇号指标的市民通常都会在当年购买机动车上牌.
(Ⅰ)问:到2018年初,该城市的机动车保有量为多少万辆;
(Ⅱ)根据该城市交通建设规划要求,预计机动车的保有量少于500万辆时,该城市交通拥堵状况才真正得到缓解.问:至少需要多少年可以实现这一目标.(参考数据:0.954=0.81,0.955=0.77,lg0.75=-0.13,lg0.95=-0.02)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱锥P-ABC中,PA=PB=AB=BC,∠PBC=90°,D为AC的中点,AB⊥PD.
(1)求证:平面PAB⊥平面ABC;
(2)求二面角B-PD-C的余弦值.

查看答案和解析>>

同步练习册答案