精英家教网 > 高中数学 > 题目详情
已知函数f(x)=log2x与函数y=g(x)的图象关于x=1对称.
(1)求g(x)的解析式,并求其定义域;
(2)若关于x的不等式f(x)+g(x)<log2(x2-2ax+2a+4)(a∈R)恒成立,求实数a的取值范围.
考点:对数函数图象与性质的综合应用
专题:函数的性质及应用
分析:(1)由题意可得g(x)=f(2-x),根据解析式求出定义域.
(2)由题意可得x2-(a+1)x+a+2>0在x∈(0,2)上恒成立,令h(x)=x2-(a+1)x+a+2,可得
a+1
2
≤0
h(0)=a+2≥0
,或②
0<
a+1
2
<2
h(
a+1
2
)>0
,或③
a+1
2
≥2
h(2)=4-a≥0
.分别求得①、②、③的解集,再取并集,即得所求.
解答: 解:(1)由于函数f(x)=log2x与函数y=g(x)的图象关于x=1对称,
可得g(x)=f(2-x)=log2(2-x),显然定义域为(-∞,2);
(2)∵f(x)+g(x)=log2x+log2(2-x)=log2x(2-x)<log2(x2-2ax+2a+4)恒成立,
∴x(2-x)<x2-2ax+2a+4在x∈(0,2)时恒成立,
即x2-(a+1)x+a+2>0在x∈(0,2)上恒成立.
令h(x)=x2-(a+1)x+a+2,可得
a+1
2
≤0
h(0)=a+2≥0
,∴
a≤-1
a≥-2
,∴-2≤a≤-1;
或②
0<
a+1
2
<2
h(
a+1
2
)>0
,∴
-1<a<3
1-2
2
<x<1+2
2
,∴-1<a<3;
或③
a+1
2
≥2
h(2)=4-a≥0
a≥3
a≤4
,∴3≤a≤4;
综上:-2≤a≤4.
点评:本题主要考查对数函数的图象和性质的综合应用,体现了转化以及分类讨论的数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD是矩形.已知AB=4,AD=2,PA=2,PD=2
2
,∠PAB=60°.
(1)证明AD⊥平面PAB;
(2)求异面直线PC与AD所成的角的大小;
(3)求二面角P-BD-A的平面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三棱柱ABC-A1B1C1的各条棱长均为2,点B1在平面ABC内的射影恰好落在AC边的中点O处.
(1)求点A到平面BCC1B1的距离;
(2)棱BB1上是否存在点P,使得二面角P-AC-B的大小为60°?若存在,请确定点P的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥S-ABCD中,底面ABCD是边长为4的正方形,O是AC与BD的交点,SO⊥平面ABCD,E是侧棱SC的中点,直线SA和AO所成角的大小是45°.
(1)求证:直线SA∥平面BDE;
(2)求直线BD与平面SBC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱柱ABCD-A1B1C1D1中,侧棱DD1⊥底面ABCD,AD⊥DC,AD∥BC,AD=DD1=2,BC=DC=1.点E是侧棱DD1的中点.
(1)证明:B1E⊥AB;
(2)若点F在线段B1E上,且B1F=
1
3
B1E,求直线AF与平面BDD1B1所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=log 
1
a
[(a-1)x-2].
(1)若a>1,求f(x)的定义域;
(2)若f(x)>0在[1,
5
4
]上恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,a2=a-1(a≠0且a≠1),其前n项和为Sn,且当n≥2时,
1
Sn
=
1
an
-
1
an+1

(1)求证:数列{Sn}是等比数列;
(2)求数列{an}的通项公式;
(3)若a=4,令bn=
9an
(an+3)(an+1+3)
,记数列{bn}的前n项和为Tn,求Tn的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x|x-2|
(1)画出该函数的图象;
(2)设a>2,求f(x)在[0,a]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

利用计算机产生0-1之间的均匀随机数a,则事件“3a-1<0”发生的概率为
 

查看答案和解析>>

同步练习册答案