精英家教网 > 高中数学 > 题目详情
5.已知函数f(x)=ex•sinx,若当x=θ时,f(x)取得极小值,则sinθ=$-\frac{{\sqrt{2}}}{2}$.

分析 求出函数的导数,解关于导函数的方程,求出θ的值,从而求出sinθ的值即可.

解答 解:f′(x)=ex(cosx+sinx)=$\sqrt{2}$exsin(x+$\frac{π}{4}$),
令f′(θ)=0,解得:θ=2kπ-$\frac{π}{4}$,(k∈Z),
则sinθ=sin(-$\frac{π}{4}$)=-$\frac{\sqrt{2}}{2}$,
故答案为:-$\frac{\sqrt{2}}{2}$.

点评 本题考查了函数的单调性、极值问题,考查导数应用,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知集合A={x|x=k+$\frac{1}{2}$,k∈Z},集合B={x|x=2k+$\frac{3}{2}$,k∈Z},则(  )
A.A=BB.A∩B=∅C.A⊆BD.B⊆A

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知集合A={x∈Z|-1≤x<3},B={1,2,3},则A∩B为(  )
A.{-1,0,1,2}B.{1,2,3}C.{1,2}D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数y=f(x)的图象上的每一点的纵坐标扩大到原来的3倍,横坐标扩大到原来的2倍,然后把所得的图象沿x轴向左平移$\frac{π}{6}$,这样得到的曲线和y=2sinx的图象相同,则已知函数y=f(x)的解析式为f(x)=$\frac{2}{3}$sin(2x-$\frac{π}{6}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的右焦点F(c,0),O为坐标原点,以F为圆心,OF为半径的圆与该双曲线的交点的横坐标为$\frac{c}{2}$,则该双曲线的离心率为(  )
A.$\sqrt{2}$B.$\frac{{1+\sqrt{3}}}{2}$C.2D.$\sqrt{3}+1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设函数f(x)=loga|x-1|在(-∞,1)上单调递增,则f(a+2)与f(3)的大小关系是(  )
A.f(a+2)>f(3)B.f(a+2)<f(3)C.f(a+2)=f(3)D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=$\left\{\begin{array}{l}2x+1\\ f(x-3)\end{array}$$\begin{array}{l},x≤0\\,x>0\end{array}$,则f(2017)等于(  )
A.-1B.1C.-3D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.平面向量$\overrightarrow a$=(m,1),$\overrightarrow b$=(1,2),若$\overrightarrow a$⊥$\overrightarrow b$,则实数m的值为-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.柱坐标$({4,\frac{π}{6},5})$化为直角坐标$(2\sqrt{3},2,5)$,球坐标$({4,\frac{π}{3},\frac{π}{2}})$化为直角坐标(0,2$\sqrt{3}$,2).

查看答案和解析>>

同步练习册答案