精英家教网 > 高中数学 > 题目详情
13.己知数列{an}的通项为an=$\frac{n}{{2}^{n-1}}$,则它的前n项和Sn=4-$\frac{4+2n}{{2}^{n}}$.

分析 利用“错位相减法”、等比数列的前n项和公式即可得出.

解答 解:∵数列{an}的通项为an=$\frac{n}{{2}^{n-1}}$,
∴它的前项和Sn=1+$\frac{2}{2}+\frac{3}{{2}^{2}}$+…+$\frac{n}{{2}^{n-1}}$,
$\frac{1}{2}{S}_{n}$=$\frac{1}{2}+\frac{2}{{2}^{2}}$+$\frac{3}{{2}^{3}}$+…+$\frac{n-1}{{2}^{n-1}}$+$\frac{n}{{2}^{n}}$,
∴$\frac{1}{2}{S}_{n}$=1+$\frac{1}{2}$+$\frac{1}{{2}^{2}}$+…+$\frac{1}{{2}^{n-1}}$-$\frac{n}{{2}^{n}}$=$\frac{1-\frac{1}{{2}^{n}}}{1-\frac{1}{2}}$-$\frac{n}{{2}^{n}}$=2-$\frac{2+n}{{2}^{n}}$,
∴Sn=4-$\frac{4+2n}{{2}^{n}}$.
故答案为:4-$\frac{4+2n}{{2}^{n}}$.

点评 本题考查了“错位相减法”、等比数列的前n项和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$.A为椭圆C上一动点(A异于左、右顶点),F1、F2分别为椭圆C的左、右焦点,且△AF1F2面积的最大值为1;
(Ⅰ)求椭圆C的方程
(Ⅱ)如图,已知点P(2,0),连接AP交椭圆C于点M,连接AF1、MF1并延长分别交椭圆C于点B、N,记$\overrightarrow{A{F}_{1}}$=λ$\overrightarrow{{F}_{1}B}$,$\overrightarrow{M{F}_{1}}$=μ$\overrightarrow{{F}_{1}N}$(λ、μ∈R),求λ+μ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在△ABC中,内角A,B,C所对的边分别为a,b,c,函数f(x)=$\sqrt{3}$sinx-cosx,若f(2A)=f(2B),且A≠B.
(1)求∠C的大小;
(2)若△ABC的面积为$\frac{\sqrt{3}}{8}$,求a+b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=2msinx-2cos2x+0.5m2-4m+3且函数f(x)的最小值为19,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为$\frac{2π}{3}$,|$\overrightarrow{b}$|=1,且对任意实数x,不等式|$\overrightarrow{a}$+x$\overrightarrow{b}$|≥|$\overrightarrow{a}$+$\overrightarrow{b}$|恒成立,则|$\overrightarrow{a}$|=(  )
A.$\sqrt{2}$B.1C.2D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知数列{an}为等比数列,前n项和为Sn,且a5=2S4+3,a6=2S5+3,则此数列的公比q=3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在圆锥PO中,已知高PO=2,底面圆的半径为4,M为母线PB上一点;根据圆锥曲线的定义,下列四个图中的截面边界曲线分别为圆、椭圆、双曲线及抛物线,下面四个命题,正确的个数为(  )   
①圆的面积为4π;
②椭圆的长轴为$\sqrt{37}$;
③双曲线两渐近线的夹角为π-arcsin$\frac{4}{5}$;
④抛物线中焦点到准线的距离为$\frac{{4\sqrt{5}}}{5}$.
A.1 个B.2 个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知数列{an}满足a1=2,an+1=$\frac{2(n+2)}{n+1}$an(n∈N*
(I)求{an}的通项公式;
(II)设{an}的前n项和为Sn,证明:$\frac{1}{{S}_{1}}$+$\frac{1}{{S}_{2}}$+$\frac{1}{{S}_{3}}$+…+$\frac{1}{{S}_{n}}$≤$\frac{n}{n+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$$-\frac{{y}^{2}}{2}$=1的一个焦点与抛物线y2=8x的焦点重合,则该双曲线的实轴长等于2$\sqrt{2}$.

查看答案和解析>>

同步练习册答案