精英家教网 > 高中数学 > 题目详情
18.已知数列{an}为等比数列,前n项和为Sn,且a5=2S4+3,a6=2S5+3,则此数列的公比q=3.

分析 已知两式相减结合等比数列的求和公式可得.

解答 解:∵a5=2S4+3,a6=2S5+3,
∴两式相减可得a6-a5=2(S5-S4),
∴a6-a5=2a5,∴a6=3a5
∴公比q=$\frac{{a}_{6}}{{a}_{5}}$=3
故答案为:3.

点评 本题考查等比数列的求和公式和通项公式,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.椭圆$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{9}$=1的焦点为F1,F2,P为椭圆上一点,若|PF1|=2,则|PF2|=6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若向量$\overrightarrow{m}$,$\overrightarrow{n}$的夹角为45°,且|$\overrightarrow{m}$|=l,|2$\overrightarrow{m}$-$\overrightarrow{n}$|=$\sqrt{10}$,则|$\overrightarrow{n}$|=3$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.根据sinα<0且cosα>0,确定α是第几象限的角?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.己知数列{an}的通项为an=$\frac{n}{{2}^{n-1}}$,则它的前n项和Sn=4-$\frac{4+2n}{{2}^{n}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.记符号min{c1,c2,…,cn}表示集合{c1,c2,…,cn}中最小的数.已知无穷项的正整数数列{an}满足ai≤ai+1(i∈N*),令bk=min{n|an≥k},(k∈N*),若a20=14,则a1+a2+…+a20+b1+b2+…+b14=294.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.二元一次方程组$\left\{{\begin{array}{l}{{a_1}x+{b_1}y={c_1}}\\{{a_2}x+{b_2}y={c_2}}\end{array}}\right.$存在唯一解的必要非充分条件是(  )
A.系数行列式D≠0
B.比例式$\frac{a_1}{a_2}≠\frac{b_1}{b_2}$
C.向量$({\begin{array}{l}{a_1}\\{{a_2}}\end{array}}),({\begin{array}{l}{b_1}\\{{b_2}}\end{array}})$不平行
D.直线a1x+b1y=c1,a2x+b2y=c2不平行

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在△ABC中,角A、B、C的对边分别是a、b、c.已知(2a-c)cosB=bcosC.
(1)求角B的值;
(2)若a=1,c=2,求b.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow{b}$,且|$\overrightarrow{b}$|=2,$\overrightarrow{b}$在$\overrightarrow{a}$方向上的投影是-1,$\overrightarrow{a}$在$\overrightarrow{b}$方向上的投影是-3,$\overrightarrow{BD}$=λ$\overrightarrow{BA}$.
(1)求$\overrightarrow{a}$•$\overrightarrow{b}$;
(2)若λ=$\frac{1}{3}$,求|$\overrightarrow{OD}$|;
(3)若OD⊥BA,求λ.

查看答案和解析>>

同步练习册答案